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Digital Oscilloscopes

• 2 Channel Digital Oscilloscope
• 100 MSa/s max single shot rate
• 32K samples per channel
• Advanced Triggering
• Only 9 oz and 6.3” x 3.75” x 1.25”
• Small, Lightweight, and Portable
• Parallel Port interface to PC
• Advanced Math options
• FFT Spectrum Analyzer options

DSO-2102S $525
DSO-2102M $650
Each includes Oscilloscope,
Probes, Interface Cable, Power
Adapter, and software for
Win95/98, WinNT, Win2000
and DOS.

• 40 to 160 channels
• up to 500 MSa/s
• Variable Threshold
• 8 External Clocks
• 16 Level Triggering
• up to 512K samples/ch
• Optional Parallel Interface
• Optional 100 MSa/s Pattern Generator

LA4240-32K (200MHz, 40CH)         $1350
LA4280-32K (200MHz, 80CH)         $2000
LA4540-128K (500MHz, 40CH)       $1900
LA4580-128K (500MHz, 80CH)       $2800
LA45160-128K (500MHz, 160CH)   $7000

www.LinkIns4.com
Link Instruments • 369 Passaic Ave • Suite 100 • Fairfield, NJ 07004 • (973) 808-8990 • Fax (973) 808-8786

Logic Analyzers

• 24 Channel Logic Analyzer
• 100MSa/S max sample rate
• Variable Threshold Voltage
• Large 128k Buffer
• Small, Lightweight and Portable
• Only 4 oz and 4.75” x 2.75” x 1”
• Parallel Port Interface to PC
• Trigger Out
• Windows 95/98 Software

LA2124-128K (100MSa/s, 24CH)
Clips, Wires, Interface Cable, AC
Adapter and Software $800

All prices include Pods and Software

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeed061
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DO YOU EXCEL IN ELECTRONICS?

Part 3: The Bottom Line
by Aubrey Kagan
This month, Aubrey concludes his series on Excel by looking at the Solver func-
tion, which allows models to be solved using several variables. As an added ben-
efit, he includes a description on the use of regression, and shows us how to look
at both linear and quadratic relationships and how the technique can be extend-
ed. Join him in this final segment of his series, which has provided insight to
the available functions and shown us how to use them. March 2002

SOFTWARE IMPLEMENTATION OF THE I2C PROTOCOL

by Dariusz Caban
Thanks to the possibility of all-software implementation of the I2C protocol, micro-
controllers can communicate with I2C devices. With this article, Dariusz presents
us with an example implementation of the Standard mode of the I2C protocol
for the popular 8031 microcontroller.  March 2002

EXPANDING YOUR HORIZONS

Using CAD Mechanical Software in Design Projects
Lessons from the Trenches—by George Martin
The end of every year, brings the end to many projects for George. So, with this
expected slowdown, he fills his time with smaller, more unusual projects. One
such project, this year, was an industrial packaging project, which gave him the
chance to use the mechanical CAD software he had lying around awhile.
March 2002

THE DUST FLIES

Silicon Update Online—by Tom Cantrell
With each passing day, it seems the connection between what goes on in the
classrooms of higher education and the real world gets harder to distinguish.
Although Tom understands the necessity of fundamental research and develop-
ment, he’s lost on how some of their endeavors really benefit the average engi-
neer. Take a walk with him through those hallowed halls, and see if you can’t
find something that’s less like homework and more like fun.  March 2002

ETHERNET TECHNOLOGY

Part 1: Frames, Collisions, and 10-Mbps LANs
Technically Speaking—by James Antonakos
This month, James jump-starts us with a new series on the popular LAN technol-
ogy, Ethernet. In this first part, he concentrates on the basics, examining all the
different Ethernet specifications. But, the story doesn’t end there. In the next two
parts, he’ll also take us through the Fast and Gigabit Ethernet technologies, then
round out the series with a look at the operation of hubs, switches, and
routers.  March 2002

THE MAGAZINE FOR COMPUTER APPLICATIONS
Circuit Cellar Online offers articles illustrating creative solutions
and unique applications though complete projects, practical
tutorials, and useful design techniques.

RESOURCES

Each month Circuit
Cellar’s Resource Links
provide helpful links and
information on a variety of
featured topics.

• Pocket PC

by Brant Schroeder

• Logic Gates

by Rick Prescott

http://www.chipcenter.com/circuitcellar/
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’m sure there are plenty of interesting robotics
systems involved with factory automation and other

stationary tasks, but add locomotion to a robot and the
interest factor doubles. It could be a Stiquito that shuffles

along a tabletop, a wheeled vehicle that scurries toward the darkest place in a
room, or a treaded fire extinguisher that navigates through a model home,
robots that move attract attention. Even more attention-getting are robots that
move like living creatures in the natural world. Search the Internet and you’ll
find video clips of everything from robot jellyfish to walking humanoids. 

The spindly legs of insects convert well to robot hardware, as you can see
by our cover models. (Special thanks to Jim Frye at LynxMotion for providing
the yellow H3 Hexapod, Steve Richards at Acroname for sending the large
metallic Brainstem Bug, and Jim Conrad for the Stiquitos and nitinol-winged
butterflies.) I’d guess that bugs are probably the most common subject for life-
like movement projects, but that doesn’t mean that designing a robot version of
your favorite insect or arachnid is an easy task. Just ask anyone who has tried! 

Of course, not all robots move with the agility of a house cat (as much as I
prefer dogs, anyone who has ever seen the tail of an excited Labrador retriev-
er knock over cups, vases, or miscellaneous coffee table items will tell you that
it’s a natural movement pattern that should never be implemented in Aibo).
Some robots are built as practical solutions to everyday problems. The Trinity
College Home Fire-Fighting Robot contest provides dozens of examples of just
such an approach (see ad on page 45). If you’re interested in robots that make
life easier, be sure to read about Mike Rigsby’s Rovervac project on page 22.

Maybe a vacuum cleaner with a mind of its own isn’t for you or maybe you
prefer real fish in your garden pond as opposed to robo-carp, either way you
have to admit that robotics is an interesting discipline. The excitement of robot-
ics enthusiasts never ceases to amaze me and is evident by the number of
submissions that we get for the Robotics issue. I’ve said it before, but working
with the authors and pulling this issue together each year is really quite fun. 

I guess it worked out well that such an enjoyable issue should be my last
as the managing editor of Circuit Cellar. Thanks to the input from all of you,
putting together a quality engineering resource each month for the last three
years has been a pleasure. Congratulations to Jennifer Huber on her promo-
tion to the position of managing editor and best wishes to all of you.
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M O N T H LY  R O B O T I C S  F E AT U R E !

There�s no question that readers enjoy our annual Robotics issue, so
we�ve decided to add more robot-oriented editorial to our lineup!

Starting next month, every issue will have a full-length article featuring
one of your robot projects. As always, you the readers are invited to
submit your project abstracts or articles to: editor@circuitcellar.com. 

NEW
!
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NEW PRODUCT
Edited by John Gorsky

SMALL PACKAGE SIMPLIFIES MOTOR CONTROL
The ICON H-Bridge provides easy connectivity to a wide

range of medium-power brushed DC motors. An on-board
microcontroller monitors current and temperature to provide
protection if either trip point is exceeded. Various configu-
ration registers may be monitored and programmed via the
serial interface. These registers contain information such as
the system load current, board temperature, over-current trip
point, over-temperature trip point, and status information.

In Serial mode, the H-Bridge is enabled/disabled via a
serial command set. In Direct Drive mode, the serial input
line becomes the H-Bridge enable control pin, while the
serial output can be used to monitor the H-Bridge status. In
both operating modes each MOSFET in the H-Bridge is
controlled individually by a control input (four MOSFET
control lines in all).

The ICON H-Bridge is designed to operate with motor
voltages up to 40 V, and can carry continuous currents up
to 12 A. This robust H-Bridge handles peak currents of 25
A and can operate to 85°C. 

Connectivity is simplified to two receptacles capable of top
or bottom insertion of 1″ × 8″ × 0.156″ headers. With the
small size and versatile interface capabilities of the ICON,
it meets the require-
ments of many DC
motor interface designs. 

Pricing in single unit
quantities is $100.

LOW-COST DATA ACQUISITION UNIT WITH USB
The Windmill 750 is a USB-based data acquisition

system that provides 16 12-bit analog inputs, 16 bits
of digital I/O, and up to eight counters. Up to eight
750s can be connected to one computer to increase
the number of channels available.

The analog inputs accept ±10 V signals and have a
conversion speed of 80 samples per second. The 750
uses an integrating
ADC to reduce
errors caused by
noise. The digital
I/O can be read and
set individually or
in groups of eight.

The package
includes the Windmill 5 software suite and lifetime
technical support. With the software, you can log
data to disk, chart data in real time, switch digital
outputs, use Excel or other Windows-based software
for instant analysis, and add optional software mod-
ules as the need arises. No programming is necessary.

The eight 16-bit counters can each count up to
65535. You can reset a counter at any time from the
software. The counters can be used in Resetting
Count or Accumulating Count mode, and can set a
scale and offset factor to the count from the software.

The Windmill 750 package costs $420.

tions. The signal chain consists of a low-noise amplifier,
mixer, bandpass sigma-delta ADC, filters, and AGC cir-
cuitry capable of 12 dB continuous gain adjustment. The
range and inherent anti-aliasing allow the AD9874 to cope
with blocking signals 80 dB stronger than the desired
signal. The AD9874 is fully programmable, providing

register-based digital control
of AGC and filter parameters,
amplifier gain and bias cur-
rents through an SPI port. 

The AD9874 is priced at
$19.95 per unit in 1000-unit
quantities. Production is
planned for third quarter 2002.

IF DIGITIZING IC
The AD9874 integrates the IF-to-digital conversion

process onto a single chip that can be used to design a
highly-sensitive, low-power receiver. The AD9874 MxFE
integrates all the functional blocks (excluding the LO
and VCO) needed for IF-to-digital conversion in a narrow-
band superheterodyne receiver. This partitioning reduces
IF filtering, enhances demodula-
tion accuracy and delegates all
modulation-specific functions to
an external digital signal processor.

The AD9874 MxFE digitizes
low-level IF signals from 10 to
300 MHz with a bandwidth of up
to 270 kHz. Typical noise figure is
8.7 dB SSB NF and linearity, as
measured by the third-order input
intercept point (IIP3), is 0 dBm
IIP3. The AD9874 is notable for
its power efficiency, 21.2 mA ver-
sus 45 mA for previous genera-

Solutions Cubed 
(530) 891-8045 
Fax: (530) 891-1643
www.solutions-cubed.com

Windmill Software Ltd.
44 (0) 161 833 2782
Fax: 44 (0) 161 833 2190
www.windmillsoft.com

Analog Devices, Inc.
(800) 262-5643
Fax: (781) 937-1021
www.analog.com

http://www.solutions-cubed.com
http://www.windmillsoft.com
http://www.analog.com


www.circuitcellar.com CIRCUIT CELLAR® Issue 141    April 2002   9

NEWSNEW PRODUCT
WEB-ENABLED PC/104-PLUS PENTIUM SBC

The PPM-TX is a PC/104-Plus Pentium SBC with a
–40 to 85° C operational temperature range. Included on
the PPM-TX are four serial ports and a 10/100 Ethernet
controller. The board is small, measuring only 3.6″ × 3.8″
(90 × 96 mm), and will run PC-compatible software for
space- and power-limited embedded designs. 

The 166-MHz Intel Tillamook Pentium CPU operates
over the industrial temperature range without requiring
fans or forced air-cooling. An internal floating point
processor and 32 KB of on-chip cache improves it overall
performance. The processor allows the PPM-TX to be
compartible with the installed base of
applications for MS-DOS, Windows,
Linux, and other PC-compatible oper-
ating systems and executives.

The companion Intel 430TX PCI
chip set contains the core logic to pro-
vide PC-compatibility plus the I/O
and bus interface logic including the
keyboard controller, 16-channel inter-
rupt controller, and real-time clock.
Onboard peripherals include DMA
controllers, three 16-bit
counter/timers, two interrupt con-

trollers, keyboard controller, speaker port, and battery
backed real-time clock. Addititionally, four independent
RS-232 serial channels, USB port, parallel line printer
interface, floppy disk controller, EIDE hard disk interface
and mouse port are provided. A precision power-fail
reset circuit and watchdog-timer are onboard for remote
and unattended applications.

The PPM-TX supports 32, 64, 128, or 256 MB of
SDRAM. It is field upgradeable since it is mounted in a
standard SODIMM socket. An onboard 32-pin socket
supports up to a 288-MB M-Systems DiskOnChip flash

memory device for use as a sold state
disk. This offers a viable alternative
for fragile floppy and hard disk drives
in harsh environmental applications.

The single quantity price of the
PPM-TX-166-0 is $625. A 266-MHz
version of the board is also available.

WinSystems, Inc.
(817) 274-7553
Fax: (817) 548-1358
www.winsystems.com

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeda728
http://www.winsystems.com


• Over 300 Bytes of RAM

• 256 Bytes of Data EEPROM

• External & Internal Interrupts

• 3 10 bit A/D Converters

• 2 Capture and Compare

• Internal Adjustable Vref

• + / - External Vref

• 3 Timers, 2 PWM

• UARTS, I2C, SPI

• Plus More!

More Power...
The New Basic Micro Atom, offers more in the same

package you are already familiar with. Built-in features

like upgradeable firmware, Analog to Digital, Hardware

Serial, In Circuit Debugging, 32 Bit Math, 32 Bit Floating

Point Math and more !

The Atom includes powerful expanded BS2 syntax

compatible software with commands such as; OWout,

OWin, ADin, LCDwrite, If..Then..Elseif..Else..Endif,

LCDread, HPWM,  Hserout, Hserin, Do..While,

Repeat..Until and more !

To order visit www.basicmicro.com or call

us at 734-425-1744 M-F 10 AM to 6 PM EST.

Development Kits

Only $149.95

Features
• Graphical Debugging (ICD)

• More Software Commands

• 32 Bit Integer Math

• 32 Bit Floating Point Math

• BS2p Compatible Syntax

• Expanded BASIC library

• Firmware upgradeable

• Unlimited Support

• Free Software Updates

• Plus More!

Kit Includes: Development Board, Atom,

Manual, Cable and power supply

Easy to use multi document interface. Open as many

files as you want all in the same interface. Easily

navigate your files with the built-in explorer window.

Powerful Software

Watch your program run step-by-step as the Atom

executes each line of code. Easily debug your code.

Bring your programs to life quicker than you ever

thought possible !

In Circuit Debugging

No more strategically placing debug

statements throughout your program!

Not only can you watch your program

execute live, you can keep an eye on

every variable and ram location as they

are affected by your program. Each

program variable is displayed in binary,

hexadecimal and its real values.

Watch it Come to Life

Atom-IC Module

Only $59.95

Microcontrollers Made Easy™
The Basic Atom is a registered trademark of Basic Micro Inc.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aedc77e
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CIRCUIT CELLAR Test YYour EEQ

Problem 3—In the circuit shown below, the switch
(S) is open for a long time and closed at t = 0.
What is the value of I just before and just after the
switch is closed? What is the time constant of the
current decay? 

Contributed by Naveen PN

Problem 4—What is the difference between a
microprocessor and a microcontroller? 

Contributed by Dave Tweed

Problem 1—The initial contents of the 4-bit serial-
in/parallel-out right shift register are shown in the
given figure. Give the contents of the register after
three clock cycles. Does this produce a maximal-
length sequence? 

Contributed by Naveen PN 

Problem 2—Consider a memory system with the
following parameters: 

Tc = cache access time = 100 ns
Tm = main memory access time = 1200 ns 

If you would like to have effective (average) mem-
ory access time equal to or less than 20% higher
than cache access time, what should be the mini-
mum cache hit ratio? 

Contributed by Naveen PN

What’s your EQ?—The
answers and 4 additional ques-
tions and answers are posted at 
www.circuitcellar.com
You may contact the quizmasters
at eq@circuitcellar.com

8 more EQ

questions 

each month in

Circuit Cellar Online

AD422 (Requires 9VDC) $79.00
AD422-1 for 110VAC 89.00
AD422L  signal powered 84.00

ADA485 (requires 9VDC) $79.00
ADA485-1 for 110VAC 89.00
ADA485L  signal powered 84.00

CMC’s low cost converters adapt any
RS232 port for RS422 or RS485
operation. These converters provide your
RS232 device with all the advantages of
RS422 or RS485 including reliable high
speed operation (up to 200 kbaud) and
data transmission distances up to 5000
feet. Two AD422s can be used to extend
any RS232 link up to 5000 feet.
Completely transparent to the system;
no software changes of any type are
necessary.

RS232/RS422/RS485 Converters

• Converts an RS232 port for
use with RS422 or RS485
devices

• Supports up to 40 RS485 or
RS422 multidrop devices

• Adds multidrop capability to
RS232 devices

• Automatically determines
data direction.

RS232 TO RS485
4 wire

• Makes your RS232 port an
RS485 port

• Supports up to 40 RS485
devices

• Automatically determines
data direction.

• Signal powered version
available

RS232 TO RS485
2 wire

ADA425 (requires 9VDC)    $89.00
ADA425-1 for 110VAC          99.00

Mention this ad when you order and deduct 5%
Use Visa, Mastercard or company purchase order

WWW.2CMC.COM       Fax:(203)775-4595

 code
CC83

PO BOX 186, Brookfield,CT 06804 (203)740-9890
Connecticut microComputer, Inc.

• Converts bi-directionally
between RS232 and RS422

• Use as a short haul modem
• Plug in and go. No software

changes required

RS232 TO RS422

1µF
6A

2 Ω

6 Ω 4 Ω
I

S

Clock
Serial in 0 1 1 0

http://www.circuitcellar.com/library/eq/
http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeeab9a
http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aef16c4
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nless you want
your robot playing

bumper cars with its
surroundings, you will

have to include some sort of noncon-
tact proximity sensor. One of the most
common methods operates by detecting
the reflection of transmitted infrared
(IR) light from the surface of a nearby
object. Various methods are available to
implement this, including applications
of television remote control receiver
modules, LM567 tone decoders, new
IR bumper modules made by Sharp,
and a simple LED and phototransistor. 

This article describes still another
option, which takes advantage of some
of the advanced features of an 8-pin
Microchip PIC microcontroller and
offers low cost, flexible mounting, high
noise immunity, and low power con-
sumption. Photo 1 shows an example of
how the optoelectronics can be mounted
in the plastic structure of a robot eye.

THE BASIC SENSOR
A simple IR bumper could consist of

an IR LED, phototransistor, and com-
parator, as shown in Figure 1. Trans-
mitted IR light reflected off an object or
surface causes the phototransistor to
conduct, generating a voltage drop
across the 1-kΩ emitter resistor. When

this voltage exceeds the threshold level
of the comparator, the comparator’s
output toggles. One obvious problem
with this is that the ambient light level
may increase enough to cause the pho-
totransistor to conduct without the
reflected IR light. Light sources include
sunlight, room lights, reflections, or
television remote control IR. 

For this method to be effective, the
threshold must be set high enough to
ignore all ambient light sources yet low
enough to detect the reflected IR light.
And this must be true at all times or
momentary bright flashes would cause
false transient bumper alarms. This,
then, requires the LED to generate
enough IR light to overwhelm the back-
ground light levels and overcome the
high threshold of the comparator. Pro-
ducing the continuous intense IR light
requires considerable current, which
also generates heat and reduces the life-
time of the LED, not to mention quick-
ly draining the battery. As a practical
matter, unless the reflecting surface is
fairly close, this is not a viable solution.

DYNAMIC THRESHOLD
The problem with the above example

is that the reflected IR must exceed all
expected ambient light levels. The dif-
ficulty is determining what the ambi-
ent light level will be so the compara-
tor threshold can be set.

But, what if you could monitor the
ambient light and adjust the threshold
based on its level? That is the basis of
this PIC IR bumper system. The ADC
of the PIC monitors the voltage of the
phototransistor that’s caused by ambi-
ent light with the IR LED off. The
LED is then turned on and the photo-
transistor is measured again. If an
object is nearby and reflects the IR,
the phototransistor will see this as a
pulse added to the background level
(see Figure 2). When the reflected
amount exceeds a software-controllable
threshold, valid object detection occurs.
An added benefit to this scheme is
that because the IR LED is pulsed, the
average power consumption is low
even though the LED current pulse
can be substantial (over 100 mA).

The phototransistor conducts in
relation to the amount of light strik-
ing it. At some light level, the photo-

A Noncontact Infrared
Bumper

u
A robot that can’t
“see” where it’s going
isn’t very helpful, so
Tom took the common
IR LED method of
proximity sensing,
added a PIC12C672-
04 to the mix, and
came up with an effec-
tive pair of eyes that
works great for robots
or any other object-
sensing application.

Tom Baraniak

FEATURE
ARTICLE
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resistance of the output port’s driver
MOSFET and the forward voltage drop
of the IR LEDs limit the output current
to not much more than 50 mA. Using
the directly driven LEDs as described
with the resulting reduced sensing
range the average current required is
typically less than 10 mA. Note that it
is necessary to eliminate the 22-Ω
resistor in series with 5-V PIC power
supply when driving the LED directly.

Similarly, an active-low output port
can drive the LEDs if you change the
output polarity in software. The LED
anodes should connect to a 5-V supply
separate from the PIC and have a
bypass capacitor between the 5-V con-
nection and the ground pin of the PIC.

Phototransistor saturation produces
a constant DC level, typically greater
than 4.3 V depending on the value of
resistor RE. This compares to approxi-
mately 0 V during normal, non-satu-
rated operation. If the voltage remains
constant at approximately 4.3 V even
with the LED off during the four-pulse
sequence (I’ll explain in more detail
later on), then it is assumed the photo-
transistor is saturated and will not
respond to light reflected off an object.
This anomaly is indicated as if an
object were detected because the sen-
sor has effectively been disabled.

Three I/O ports provide the interface
to the IR bumper. Port GP3, which is
input only, provides on/off control. This
is useful as a power-saving mechanism
and to turn off this bumper’s IR LEDs
so they don’t interfere with other possi-
ble IR applications. Ports GP4 and GP5
go active high to indicate when sensor
AN0 and sensor AN1, respectively,
detect an object or sense an error caused
by bright light. Their active-high output
time in response to an object reflection
is proportional and relative to the dis-

transistor becomes saturated and any
additional light won’t be detected. The
point at which this occurs can be con-
trolled to an extent via the phototran-
sistor’s emitter resistor or with an
optical attenuator. However, as the
value of the emitter resistor decreases,
current through it and the phototran-
sistor increases and can get excessive
when the light is bright. 

As a practical matter, proved after
much experimentation, that doesn’t
happen except under certain rare cir-
cumstances. One such instance is if a
bright light source such as an AC line
powered incandescent bulb or a flash-
light is within a couple feet of the
phototransistor and lined up directly in
front. If this is the case, there are no
objects between the light source and
robot. This condition is detectable in
the software, which can then provide a
warning signal because you don’t want
the robot blinded by the light or crash-
ing into it. Shielding the phototransistor
can also reduce the susceptibility of
the phototransistor to a light source by
blocking light that isn’t nearly exactly
lined up with the phototransistor. 

Bright light reflected off surfaces
hasn’t been observed to be a problem
with emitter resistor values of 1 kΩ or
less. Also, the software compensates for
any varying light levels such as caused
by AC line frequencies, sunlight
changes, television remote controls,
and the movement of the robot itself.

In summary then, for most practical
applications the sensors will be unaf-
fected by external light sources. The
device can detect the one unique cir-
cumstance when it is a problem.
Then, the robot’s main controller can
determine how to proceed in concert
with other sensors.

SHORT-RANGE IR BUMPER
Figure 3 shows the schematic for a

complete two-channel IR bumper sys-
tem with a sensing range in excess of
8″ depending on the reflecting surface,
ambient lighting conditions, and the
IR LED drive current. Note that it
consists of only the PIC microcon-
troller, two IR LEDs, two phototran-
sistors, a MOSFET switch, and some
ancillary resistors and capacitors.
Given that most IR bumpers are low

to the ground and there aren’t too
many sources of bright lights at that
level that could cause sensor satura-
tion problems, this simple circuit will
satisfy many bumper applications.

The phototransistors connect to
analog input channels AN0 and AN1.
The appropriate emitter resistor (RE)
adjusts the light-controlled current gain
(see Table 1). The two LEDs, one for
each phototransistor, are connected in
series and driven by the MOSFET
switch. The series connection is a
more efficient way to drive the LEDs
because more power goes to light out-
put and less to waste heat in a resistor.
I used a MOSFET because it has a lower
voltage drop and its gate drive requires
essentially no current as compared to
that of a bipolar transistor, and is
therefore more efficient. It also can be
directly connected to the output of
the PIC, thus eliminating one resistor.
You can replace it with an NPN tran-
sistor, such as a 2N3904, along with
its current limiting base resistor.

Alternately, a PIC output port could
directly drive the two series-connected
IR LEDs with reduced output power
and sensing range. At a forward voltage
drop of about 1.3 V and a 47-Ω current
limiting resistor, the current driving
the LEDs is about 50 mA. The output
port source and sink drive current is
rated at 25 mA but can exceed this at
the cost of out-of-tolerance voltage
specifications. This doesn’t matter
because an LED is being driven as
opposed to a logic gate. Heating effects
on the PIC are minimal because the
duty cycle of the LED is low. So, the
PIC is capable of supplying in excess of
25 mA for short pulses. However, the

Figure 1—When sufficient IR reflects off the surface,
the phototransistor conducts enough voltage to trip the
comparator. However, light levels may become high
enough to cause it to conduct without reflected IR light.

Reflected pulses

Ambient light

5 V

0 V

Figure 2—The reflected IR pulses add to the existing
ambient light level. If the ambient light level is meas-
ured just before the pulse, it can be subtracted from
the sum leaving only the effect of the IR light.
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OPERATION & SOFTWARE
The OPTO routine controls the IR

pulse emission and detection and pro-
vides compensation for varying light
levels (you may download the code
from the Circuit Cellar web site). This
is accomplished by measuring the
voltage of the phototransistor three
times, as is demonstrated in Figure 4.
The first measurement is at point A.
This is followed by a delay equal to
the time the IR LED will be on, but
with the LED off. Then the voltage is
measured at point B. Finally, the LED
is turned on and the phototransistor is
measured again at point C. 

The time period from point A to
point C is relatively short compared to
varying light levels. It is assumed that
the rate of change from A to B will hold
for the change from points B to C.

tance to the object. The main
controller of the robot could
use this information to deter-
mine if there’s enough time
to slow down first or if it’s
necessary for a quick stop.

There are large current
spikes when the IR LEDs
flash, so you must pay atten-
tion to the circuit layout
and provide sufficient power
supply bypassing. An RC fil-
ter is used to isolate the ana-
log components—phototran-
sistors and PIC—from the
LED drive. If possible, the
LED power and analog
power should have separate
connections to the power
supply or at least should use
separate wires to connect to a com-
mon source on the circuit board.

PERFORMANCE
Table 1 shows experimental results

for different values of IR LED current-
limiting resistors (RLED) with various
phototransistor emitter resistor values
and two different sensitivity values.
An IRLD014 logic-level MOSFET
drives the LED. 

Notice that as the LED current-lim-
iting resistor decreases the IR bumper
circuit current increases, but so does
the range. (The current shown is the
average current of the entire IR
bumper circuit. The instantaneous
LED current is much higher.) To con-
serve power, the IR bumper needs to
be on for only the direction of robot
motion and only when in motion. For
example, if moving forward, the rear
sensors can be off, and vice versa.

When tested around the house,
some typical household items worked
better than others and some not at
all. Oak wood furniture and drywall
were detectable in excess of a foot.
Clear glass in a patio door was visible
at 4″, but smoked glass was not
detected. The door of my black refrig-
erator was detected at 6″, but the
angled vent slats at the bottom were
not detected. The lesson here: don’t
depend exclusively on IR bumpers. A
complimentary bumper system might
use ultrasonics, but that’s a subject
for another article.

Because the effect of the
reflected pulse is added to the
ambient light level, its shape
changes in concert with ambi-
ent light. Thus, the reflected
light pulse when measured at
point C has been modified by
the effect of the ambient light
during the time from point B
to C, which is essentially the
same as from A to B. So, the
effect of any variations in light
levels during the time from
point A to B is added to the
start of the time from when
the IR LED is on at point B
generating a new baseline
point B’. The phototransistor
output with the LED on meas-
ured at point C is then com-

pared to B’, providing compensation for
the effects of changing light levels.

The amplitude of the reflected pulse
on the positive slope is (C – B) + (B –
A) = C – (2B – A), where 2B – A is the
new baseline. On the negative slope,
the amplitude is (C – B) – (A – B) = C –
(2B – A), where again 2B – A is the
new baseline. These corrections occur
in the routine FIXBAS. 

The waveform crest is a special case
because the slope changes direction. If
point B occurs at the maximum of the
crest, it is possible that point A will be
slightly less than point B and point C
will occur on the slightly negative slope.
For this circumstance, the equation B’ =
2B – A will provide the opposite answer
to what is expected. To account for this,
if B – A = 1, then B’ will be set equal to
B. This conclusion implies that it can

Figure 3—The simple, infrared bumper isn’t amplified. Looking at the complete
system, you see that it has two sensors and is pulsed.

W = 1 Range
RLED Average current RE = 1 kΩΩ RE = 680 ΩΩ RE = 470 ΩΩ RE = 330 ΩΩ

4.7 Ω 34 mA 14.5″ 12.5″ 10.5″ 9″
6.8 Ω 28 mA 13.5″ 11.5″ 9″ 7.5″
10 Ω 22 mA 12″ 10″ 8.5″ 7″
22 Ω 13 mA 9″ 7.5″ 6″ 5″
33 Ω 11 mA 8″ 6.5″ 5″ 4″

W = 2

4.7 Ω 34 mA 11″ 9.25″ 7.75″ 6.25″
6.8 Ω 28 mA 10.25″ 8.25″ 7″ 5.75″
10 Ω 22 mA 9.5″ 8″ 6″ 5″
22 Ω 13 mA 7″ 5.75″ 4.5″ 3.75″

Table 1—An IR bumper without amplification responds as shown. The range is a function of the phototransistor
emitter resistor RE and the LED drive current.
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the range allowing you to change the
sensitivity under computer control
depending on the application.

To reduce alarms caused by false
detections, four consecutive detections
are necessary before the detection
valid bit goes active. This also aids in
identifying when the phototransistor
is saturated. As stated previously, the
saturated condition results in a DC
voltage level above the normal oper-
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ating level. Because the varying inten-
sity of an AC line-powered incandes-
cent lamp can exceed the saturated
voltage level momentarily at the peak
of its cycle, you have to measure the
voltage at several consecutive points,
not all of which would exceed the DC
level as shown in Figure 4.

The analog voltage measuring rou-
tine determines the pulse width of
the IR LED. Part of that routine
includes a time delay to acquire the
voltage. Changing the time delay
changes the pulse width. For the com-
ponents and time constants specified,
the pulse width should be in the range
of 250 µs, ±10 to 20 µs.

The range value also can be used to
implement a relative distance range
finder. Smaller values of range corre-
spond to longer distances because the
range value is proportional to the
intensity of the reflected light. This is
also because the further the object, the
lower the intensity. After the object is
detected, as the robot gets closer, the
range value for that object will increase
proportionally. For most applications,
this is optional and just knowing that
an object is in the path is sufficient.

The pulse width varies with dis-
tance, so the use of a simple RC filter
generates a voltage that is also propor-
tional to distance. By varying the tim-
ing loops to adjust the pulse width
you can change the range of the fil-
tered voltage to better suit your needs.
An alternate method of monitoring
the pulse width is with a timing loop. 

LONG-RANGE IR BUMPER
Depending on the speed of the

robot, a sensing range of 8″ to 12″ may
not provide enough warning to stop in
time to prevent a collision. For those
applications in which additional sens-
ing range is needed, you have to add
an amplifier stage to the phototransis-
tor’s output. Then, depending on con-
ditions and component selection, the
sensing range can easily exceed 15″.

Also, because you’re using an ampli-
fier, the intensity of the emitted IR
light may be reduced to save power.
The examples I’ll discuss draw about
12 mA even with the extended range.
Running the IR LED at higher currents
will increase the range even more.

occur only when A is one less than B. If
A is two less than B, then the LED
pulse period occurs early enough or late
enough on the crest that the equation
B’ = 2B – A is still valid.

The phototransistor voltage caused
by a reflected pulse measured at point C
is cpoint in the OPTO1 and OPTO2 rou-
tines. In theory, if cpoint is greater than
the fixed bpoint, it would be because
enough light was reflected off a nearby
object to be detected. In reality, there
may be some signal induced in the pho-
totransistor circuit when the LED puls-
es. This will probably occur unless the
power and ground connections to the
LED drive are decoupled from the ana-
log section of the PIC. To compensate
for the induced voltage, a minimum
offset value (W) is added to bpoint,
and cpoint is compared to it. Then,
whenever the reflected voltage exceeds
the amount W + bpoint, it is because of
a valid reflection off a nearby object.

Variable W also can be used to con-
trol the sensitivity of the sensor. Low
values such as W = 2 give the greatest
sensing range. Higher values reduce

Photo 1—Each of the two robot eyes is made out of
PVC plastic plumbing pieces. There are two IR
bumpers consisting of a phototransistor and an LED.
One sensor is located above the photo-flash tube and
looks forward, and the other sensor is mounted on the
side near the Polaroid ultrasonic transducer. The opto-
electronics mount in holes drilled using a no. 10 drill bit.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aef0fdf
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TRANSISTOR AMPLIFIER
A simple, one-transistor amplifier can

be constructed using a common NPN
transistor, a couple of resistors, and a
couple of capacitors (see Figure 5). The
amplified and inverted output is taken
at the transistor’s collector. The tran-
sistor emitter resistor sets the DC oper-
ating point and gain, and the capacitor
(CE) controls the gain for AC signals.
Table 2 shows different values for RE

and CE and the resulting sensing range
per experimental results. Your results
may vary depending on, among other
things, the IR LED drive current. Resis-
tor RE should not be less than 470 Ω.

Note that the collector resistor of
the phototransistor is down to 220 Ω.
Lower values will work but with
decreased gain and higher current flow
when the phototransistor is saturated.
Higher values will give increased gain
but also make the phototransistor
more susceptible to saturation from
ambient light. Thorough experimenta-
tion shows that values less than 700 Ω
but greater than 200 Ω give the best
balance of performance.

The phototransistor is AC coupled to
the amplifier through a 0.47-µF capac-
itor. Together with the input imped-
ance (RB || RA) the coupling capacitor
forms a high-pass filter. Lower frequen-
cy components such as from an incan-
descent lamp are attenuated while the
reflected pulse is passed through. If
there are no reflected pulses, the pho-
totransistor outputs a constant DC
voltage. This is blocked by the input
capacitor resulting in the amplifier
also outputting a constant DC level.

Similarly, when the light level is so
great that the phototransistor satu-
rates, its collector voltage is held to a

constant DC voltage of a couple
tenths of a volt and it, too, is blocked
from the amplifier by the input capac-
itor. The output of the amplifier for
the saturated condition is also a con-
stant DC level—the same as the con-
stant light level. The result is that the
saturated light condition would look
as if there were no object nearby to
reflect IR pulses even if the robot were
headed straight for a bright light.

Now, notice that resistor RS (2.2 MΩ)
is in parallel with the input capacitor.
When in typical room lighting, under
which the phototransistor isn’t satu-
rated, its collector voltage sits at
nearly 5 V. This effectively puts RS in
parallel with RA causing the amplifier
output to dip slightly (remember, the
amplifier is an inverter). As the pho-
totransistor begins to conduct because
of bright light, the collector voltage
decreases down toward zero, so RS is
now in parallel with RB. This paral-
lelism causes the amplifier output to
rise slightly to a maximum, which
may be about 0.1 or 0.2 V more than
the no pulse condition. 

Reflected pulse

Ambient light

Reflected pulse

C

C
B

B B′

A

A

B′

Figure 4—The ambient light level is subtracted prior to
the IR pulse so its effect can be subtracted.
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The software checks for the saturated
condition by measuring at points A, B,
and C (see Figure 4). If they are at or
near the maximum and all at about
the same level for four consecutive
measurements, then you assume it’s
caused by a saturated light condition.
Note that you can’t simply compare to
see if these points are above the maxi-
mum level because under normal con-
ditions (with a line-powered light
source) there will be a sinusoid upon
which the reflected pulses would be
superimposed. This explains why it is
instead necessary that all three points
be at about the same level for the four
consecutive measurements.

Pay attention to the circuit’s wiring.
Keep the analog parts of the circuit
(amplifier) separate from the digital
parts (IR LED drive). Any signal coupled
into the amplifier will be amplified.
This includes switching components
for the LED that cause ripple on the 5-V
supply or variations in ground. Connect
the analog components, including the
PIC, to 5 V through an RC filter com-
prised of a 47-Ω resistor and at least a
100-µF capacitor. Use separate power
and ground connections for the LED
drive circuit to help isolate the LED
switching noise from the amplifier.
However, if the sensor detects an object
even when there is none, there still
may be enough coupled noise after
amplification to appear as if it were real
signal. If attending to the wiring doesn’t
help, increase the reflected light sensi-
tivity in the software until it does.

OP-AMP AMPLIFIER
A single supply op-amp stage also

can provide signal gain (see Figure 6).
Unlike the transistor amplifier version,
the phototransistor here is
connected to a common collec-
tor and the noninverted signal
is taken at the emitter resistor
R2. A 0.22-µF capacitor paral-
lel to R2 smoothes out the
higher frequency noise compo-
nents. The signal is capacitive-
ly coupled to the noninverting
input of the op-amp through a
0.22-µF capacitor.

The microcontroller’s ADC
has a range of 0 to 5 V. To
make best use of that range

for varying light sources such as incan-
descent lamps, the DC output of the op-
amp is biased to approximately 2.5 V.
This is accomplished with voltage
divider resistors R4 and R6 and depends
on the gain of the op-amp, which is
determined by resistors R5 and R3.
Divide 2.5 V by the gain to get the
voltage divider’s value. Note also that
the input coupling capacitor (C3) in
concert with the equivalent resistance
of the voltage divider (the equivalent
resistance is R4 parallel to R6, which
approximates to R4 because R6 is much
greater than R4) forms a high-pass filter.
Choose R4 and C3 for a cut-off frequen-
cy of about 250 Hz. This will attenuate
AC line sources such as from an incan-
descent lamp while passing the approxi-
mately 500-Hz reflected pulses.

The capacitor parallel to the feed-
back resistor takes the rough edges off
the amplified pulse. The RC time con-
stant should be in the 15- to 18-µs
range—the exact number is not criti-
cal. With a gain of 40, the typical
sensing range is 15″. For a gain of 70
the range increases to 20″.

As with the transistor amplifier ver-
sion, some tricks are needed to detect
phototransistor saturation. This is
done two ways. The first way is with
1-MΩ resistor R7 across the input
capacitor (C3). Then, as the phototran-
sistor output becomes more positive
with increasing conduction, the DC
output of the op-amp will rise to a
maximum of about 0.3 V above typical
lighting conditions. At saturation, the
phototransistor simplifies to a short
circuit. Any noise present on the 5-V
line appears at the input to the op-amp
and is amplified. It turns out that when
the IR LED is pulsed on, the 5-V line

dips slightly for the duration of the
pulse. The amplified result is shown
in Figure 7. Points A and B should
measure within 1 or 2 bits of each
other, but point C will be less than
both of the others. This, combined
with the higher DC level, provides a
method for detecting saturation.

Even though some noise is beneficial
for detecting saturation, it is still advis-
able to decouple the analog sections
(phototransistor, op-amp, PIC) from the
LED drive through an RC filter (R1/C4).
Also, be careful routing the 5 V and
ground for the LED and try to keep
them separate from the analog power.

TRIPLE SENSOR
A third analog input channel could

be used for an IR bumper that monitors
three sensors (you may download the
schematic from the Circuit Cellar web
site). It operates essentially the same
as the two-sensor circuit except in the
way it signals that an object has been
detected. Using the third port bit
GP2/AN2 as an analog input leaves
only two bits to communicate with the
main controller. One of those bits, GP3,
is input only, which leaves just GP5.

The solution is to make GP5 bidirec-
tional and to send the sensor-detected

bit serially. As an input, GP5
monitors the on/off control
for the PIC. It works as fol-
lows. The main controller’s
I/O bit connected to GP5 is a
combination input/open col-
lector output bit pulled high
with a 10-kΩ resistor. At
powerup, and as part of the
sensor-checking loop, GP5 is
configured as an input and
checks the state of the I/O bit.
If the main controller pulls it
low by turning on its open

Figure 5—The phototransistor amplifier uses a single
transistor and a couple of capacitors and resistors.

Figure 6—The phototransistor amplifier uses a single supply op-amp.
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collector output, the PIC is command-
ed off. The software loops while wait-
ing for the I/O bit to return high.
When the main controller’s open col-
lector is off, the I/O bit is pulled high
by the 10-kΩ resistor, which is sensed
by GP5 as the command to turn on. 

The bumper’s PIC then checks each
sensor for a valid detection. At the end
of the sensor-checking loop, if an object
is detected, GP5 will be set low by the
PIC. After a time period of, say, 100 µs,
GP5 may or may not return high
depending on which sensor has detected
an object. During the next 100-µs win-
dow, while sensor one detects an object,
GP5 will stay low. Sensor two corre-
sponds to the next 100-µs time slot, and
sensor three corresponds to the last. If
any of the sensors has a valid detection,
GP5 will be held low during its corre-
sponding time slot after which the
sensor-checking sequence is repeated
(you may download a diagram of this
from the Circuit Cellar web site).

Another option, depending on your
requirements, is for GP5 to simply indi-
cate when any of the three sensors
detect an object. You may have three
sensors in the forward direction, in
which case the robot should stop if any
of them detect an object, but which one
of them detects the object isn’t impor-
tant. It’s possible that all three will
detect the object. For this application,
GP5 could simply pulse low or remain
low as long as an object is detected.

To implement bidirectional control
using GP5, GP5 is switched between
an input port and an active-low-only
output port. It never drives the output
high because that might run up against
the main controller driving the I/O bit

low. When switching from an input to
an output, you must set the output low
before converting to Output mode.
Then, when GP5 transforms from
input to output, it will already be set
low and will output an active-low
state. When it’s done outputting the
low state, GP5 switches back to an
input to effect a high state. Thus, to
send an active low pulse, GP5 starts as
input and the I/O line is pulled high.
Next, GP5 is set low and then switches
to an output port, which effects an
active low. At the end of the low pulse,
GP5 switches back to input and the
line is again pulled high by the resistor.

QUAD SENSOR
The 8-pin PIC has four analog inputs,

so it’s possible to monitor four sensors
(download the circuit diagram from the
Circuit Cellar web site). However, this
is tricky because two output bits, one
to drive the LED and one to signal an
object detection, are needed. Of the two
non-analog I/O bits, only GP5 has out-
put capability. The solution is to have
two analog inputs perform double duty
and function as digital outputs and
drive the LEDs. As with the triple sen-
sor described earlier, GP5 performs bidi-
rectional communication with the
main controller and adds a fourth time
slot for the fourth sensor. Or, if it isn’t
necessary to know which particular
sensor detected the object, GP5 simply
could be taken low to indicate that at
least one sensor detects an object.

The LEDs and phototransistors are
grouped as two groups of two, AN0 and
AN1 as a group and AN2 and AN3 as
a group. Port AN1/GP1 drives the LEDs
for AN2 and AN3. Likewise, AN2/GP2
drives the LEDs for AN0 and AN1.

The LEDs are switched by logic-level
MOSFETs driven by the port bits when
in Output mode. The MOSFET begins
to conduct current with a gate voltage
around 1.5 V and is fully on at about 2 V.
But, the output from an amplifier is
around 2.1 V when in Analog Input
mode, which would cause the MOS-
FET to turn on if it weren’t for the
divide-by-two resistor divider connect-
ed to the gate of the MOSFET. 

When the port bit is set high at 5 V
in Output mode, even with the divider,
the gate voltage is sufficient to fully

turn on the MOSFET. Large amplitude-
varying light sources, such as from an
AC line-powered bulb, will also cause
the MOSFET to conduct, but only on
the most positive part of the cycle and
only briefly. A 2.7-kΩ resistor between
the amplifier and the port bit limits the
current into the amplifier when the
bit is in Output mode. When the PIC
is commanded off and between active-
high pulses to fire the LED, the port
bit should be held low. This prevents
the MOSFET from switching, which,
although harmless, does waste power.

OPTOELECTRONICS
One parameter of interest when

choosing the LED is how much the
light diffuses with distance from the
source. It should be concentrated in a
small spot size on the target. Likewise,
the phototransistor should limit its
field of view to that of the area of the
emitted light. The optoelectronics
specified have beam angles of ±12°.

Sensing range can be extended with
the use of optics external to the opto-
electronics. As a practical matter, you
can’t use external optics with optoelec-
tronic devices that already have lenses
(e.g., dome-shaped LED), because you’ll
never get the alignment right. External
optics should be used only with devices
that have flat lenses. And, because
these are typically clear lenses, I recom-
mend some sort of additional IR filter.

The LED and phototransistor should
be mounted near each other although
the exact placement isn’t critical. A
typical mounting arrangement might
have them mounted parallel on 0.5″
mounting centers, as shown in Photo 1.
They can be mounted right in the
skin or frame of the robot or in sepa-
rate fixtures. (Use a no. 10 drill bit for
T-1 3/4 packages.) 

Dip caused by LED current

Phototransistor
output when

saturated

A BB

CC

LED
OnLED Pulse

5V

Figure 7—Note how to detect phototransistor satura-
tion when using the op-amp amplifier.

Resistor RE Capacitor CE Range

470 Ω No capacitor 14.5″
680 Ω No capacitor 12.5″
1000 Ω No capacitor 12″
2200 Ω No capacitor 8.5″
470 Ω 2.2 µF 27″
680 Ω 2.2 µF 26″
1000 Ω 2.2 µF 23″
2200 Ω 2.2 µF 20.5″
3300 Ω 2.2 µF 19″
4700 Ω 2.2 µF 16″

Table 2—When using the transistor amplifier and the
given values of RE and CE, the IR bumper responds with
the given values. Note that the range can exceed 2′.
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SOFTWARE
To download the code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2002/141/.

SOURCES
IR LEDs, phototransistors, MOSFET
switch
Digi-Key Corp.
(800) 344-4539
(218) 681-6674
Fax: (218) 681-3380
www.digikey.com

PIC12C672-04 Microcontroller
Microchip Technology Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Tom Baraniak attended University of
Wisconsin, Madison. Presently, he
runs the Electronics Shop for the
Chemical Engineering and Materials
Science Department at University of
Minnesota. As a kid he built his first
robot out of orange crates and coffee
cans. Today his materials are a bit
more sophisticated. You may reach
him at baraniak@spexotics.com.

What is important is that they be
optically isolated from each other.
There is enough stray scatter in the
plastic packages for the phototransis-
tor to detect IR light from the nearby
LED. This includes the back of the
package where the leads protrude.
Also, some plastics or heat shrink tub-
ing that appear to be opaque may not
be so to infrared light, so be careful
what material you mount the optos in.
To aid in isolating stray emitted IR
radiation, you can use a TO-18 metal
package IR LED like the F5D1QT in
place of the QED123QT. The F5D1QT
does cost five times as much, howev-
er, the small quantity that you need
and ease of mounting for isolation
concerns should be considered.

The phototransistor could be
mounted recessed in a tube that
allows the reception of the emitted IR
pulse yet blocks most of the indirect
ambient light. Then, unless a light
source is directly lined up with the
sensor, its effect will be limited to
reflections off nearby surfaces, allow-
ing use of a higher emitter resistor
value for increased sensitivity. 

A variety of optoelectronics were
tested. The best results were achieved
with the inexpensive QED123QT IR
LED and QSD124QT phototransistor.
In addition, the phototransistor has a
built-in IR filter, which reduces the
effect of most visible light. This is
especially important in areas of high
fluorescent lighting because this light
has considerable noise associated with
it in the visible spectrum, which is cut
out by the IR filter. 

I also tested L14F1QT photo
Darlingtons. Their higher inherent
gain results in longer range but at the
expense of easier saturation. Photo
Darlingtons are not recommended
unless your application can tolerate
their characteristics. They have some
benefits in the simple, basic IR
bumper in which no additional ampli-
fier is used, but use them with cau-
tion. Choose the emitter resistor value
that works best for you.

APPLICATIONS
You have several options to choose

from to meet your robot’s noncontact
bumper needs. For most applications,

the simple IR bumper that doesn’t use
additional amplifiers and has relative-
ly few parts will work fine. And, the
sensors can be mounted right in the
skin of your robot, providing flexibili-
ty in the shape and construction of
your robot. There are no modules or
clumsy little metal boxes to mount.

If you need more than two sensors,
you can easily expand this system by
using a microcontroller with multiple
A/D input channels. And, you are not
limited to the Microchip PIC series
because several microcontrollers come
with a built in A/D converter.

Although this sensor is intended for
robotic uses, there are many other
applications that would benefit from
its simplicity and immunity to exter-
nal light sources. These include the
ubiquitous hands-free water faucet or
toilet flush control, noncontact and
electrically isolated switches, sensing
whether or not an object is where it
should be, security measures, and
numerous others. I

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeda416
ftp.circuitcellar.com/pub/Circuit_Cellar/2002/141/
http://www.digikey.com
http://www.microchip.com
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have long been
interested in mov-

ing machines—a
Lionel train when I was

six, Mr. Machine when I turned eight,
and so on. I was an early adopter of a
first generation Aibo, the robot dog
from Sony. Still, it seems to me that
robots ought to do something worth-
while. From the persistent desire to
create a machine that could do some-
thing useful came the idea for the
Rovervac, the robot vacuum cleaner.
Photo 1 shows the Rovervac.

In its current configuration (the
Rovervac evolves weekly), the robot
finds its way around obstacles and
vacuums the floor. An ultrasonic
detector sweeps like a radar beacon to
find obstacles. A BASIC program run-
ning on a Palm PDA provides the
logic for operation. 

A hand-held vacuum, the Deluxe
Wet-Dry manufactured by DirtTamer,
with high efficiency particulate air
(HEPA) filtration does the cleaning.
HEPA filtration prevents particles larg-
er than one micron from being blown
back into the room. The Palm PDA
communicates with a Pontech servo
controller board, taking input from
the ultrasonic detector and providing
output to the relay control board.

The ultrasonic sensor module
works by sending out a 40-kHz sound
and timing the returned wave. Photo 2
displays the ultrasonic sensor. This
process occurs 20 times per second.
The output of the sensor is from 0 to
10 V, representing 6″ to 6′. Zero volt-
age on the output also represents no
return of the sound wave (distance
greater than about 10′). 

The Pontech controller accepts ana-
log inputs less than 5 V, therefore, it’s
necessary to reduce the ultrasonic
output voltage (through a voltage
divider network on the relay con-
troller board) before it’s digitized and
sent to the PDA. Output of the ultra-
sonic transducer covers a 15° path. 

The 15° path is not sufficient to
detect everything in the forward path
of the vacuum, so I tried alternatives.
First, I placed baffles (razor blades) in
front of the transducer. This deflected
the sound waves and changed the area
of detection, but it still left holes in
the detection window. The “one sen-
sor sees all” method also created
another problem: An object in front of
the vacuum may need to be detected
at 12″ from the sensor, and an object
to the side becomes a problem when
it’s 8″ from the transducer.

My next effort required using two
ultrasonic modules angled slightly
toward the center, as you can see in
Figure 1. I thought this would cover
all of the area in the forward path of
the Rovervac. The uncovered triangle
in front of the machine could be
managed by software, because noth-

Rovervac—A Robotic
Vacuum Cleaner

i
What do you get
when you attach an
ultrasonic detector
and a PDA to a hand-
held vacuum cleaner?
It may not be lean
and mean, but Mike’s
mobile cleaning
machine project pro-
vides ongoing enjoy-
ment as he continues
to develop his house-
hold helper.

Mike Rigsby

FEATURE
ARTICLE

Detection
zone

Figure 1—You can learn from my mistakes as well as
my successes. I intended to cover the detection zone
with two ultrasonic detectors properly multiplexed, but
it didn’t work. The modules weren’t synchronized.
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tight spot). Two wheels allow a round
disk to rotate around its center so it
never has to back up. 

I based the diameter of the disk on
the size of the cordless vacuum it had
to carry. I cut a small hole in the front
of the base and fastened the bendable
attachment to the hole (see Photo 5). I
considered pointing the business end
of the vacuum down to reduce the cir-
cle diameter, but this quickly
devolved into a tall, unstable machine.
For the base, I cut 0.25″ thick acrylic
with a scroll saw. The task was easy.
This was my first experience with a
scroll saw, and it went well. The dia-
gram in Figure 2 shows the base.

For me, mounting the airplane
wheels to the gear motor shaft proved
to be a great construction challenge. In
principle, you need to pull off the foam
tire, separate the wheel halves (they
slide apart), drill a hole the same size as
the motor shaft, drill in a set screw,
insert the motor shaft, tighten the set
screw, push the wheel halves together,
and replace the foam tire. The motor
shaft has a 5-mm diameter. Forget
about English equivalents, you need a

5-mm drill bit (unless you like
wobbly wheels). The 5-mm
drill bit, if you live in the U.S.,
is best found on the Internet.

CONTROL
Controlling the Rovervac

involves four elements,
including the processor, soft-
ware, cables, and interface
electronics. The Palm m100
serves as the processor. I used
HotPaw Basic for the soft-
ware. A Palm serial cable and
a null modem adapter were
chosen. Lastly, I chose the

ing could get into the triangle with-
out first passing through one or both
detection zones. 

I discovered erratic behavior when I
tested this setup. The problem was
caused by the operation of the two
modules that weren’t synchronized.
For example, the transducer on the
left might send out a sound wave
then shut down and listen for the
return. The left module would cor-
rectly read a return from 6′ away, but
the right module might go into Listen
mode as the sound wave returns. The
right module thinks the wave it sent
out came back instantly, so some-
thing must be inches away. To suc-
cessfully use multiple transducers,
different frequencies or multiplexing
(meaning one transducer pinging at a
time) must be used.

Another minor challenge with this
module is that distant objects (greater
than 6′) give the same output (0 V) as
close objects (less than 6″). I solved
this by aiming the transducer slightly
downward (see Photo 3) so
that a return from the floor
always can be expected.
Furthermore, I used software
to eliminate readings of 0 V,
because normally nothing will
get within 6″ of the transducer.

I finally settled on using a
servomotor, which you can
see in Photo 4 to rotate the
transducer. First, the sensor
assembly is rotated to the left,
then forward, then right. At
the same time, ultrasonic
readings are taken in each
position. This method has the

flexibility of allowing a ping to be
taken in any direction; it also supports
the use of different actions based on
obstacles in varying relative locations.
For example, an object detected to the
right but not detected in the center
may require a minor course correction
rather than a total rotation.

Something I learned from my expe-
rience with Aibo (which goes against
my engineering ways) is that every-
thing a robot does doesn’t need to be
useful or practical. My wife wanted
wiggle eyes, a nose, and a mouth, so
those features are attached to the vac-
uum to indicate which end is the
front. Expanding on the almost useless
features, I added a tail—a pipe cleaner
attached to a servomotor. The tail is
normally down but whips up when
the Rovervac rotates. The tail can be
programmed to wag up and down or
do other useless tricks, but also is a
beneficial programming tool. During
operation, it’s easy to test functions
by having the tail rise when a line is
reached in software or when a specific
input condition has occurred.

Mechanical assembly of electrical
devices always proves to be a chal-
lenge for me. I didn’t want this vacu-
um to be an upright, top-heavy device,
because that would create tipping
problems, require slow acceleration,
and prevent cleaning under tables and
counters. Having settled on low
height, shape was the next considera-
tion. Although rectangular forms are
desirable for moving a rotating brush
close to a wall, rectangles can be more
challenging to maneuver (sometimes
you have to back up and angle out of a

Photo 1—The Rovervac, a cordless robotic vacuum
cleaner, is composed of electronic components mount-
ed on a clear acrylic base.

Photo 2—The Senix ultrasonic sensor board has four
terminals—two for power and two for output.

Photo 3—The geometric structure of the Rovervac puts most of the weight
behind the wheel axis allowing the front to be raised above the carpet. The ultra-
sonic sensor (upper right) is angled in such a way to guarantee a return ping.
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Pontech controller board (see Figure 3)
and relay interface board (see Figure 4)
as the interface electronics.

The Palm m100 comes with the
required serial cable. It needs only a
null modem adapter to connect to the
Pontech board. HotPaw Basic soft-
ware is available for a free 30-day
trial basis, after which a $20 registra-
tion fee is levied. The Pontech board
has eight outputs that are configured
in the software as servo outputs or
digital outputs. Five 8-bit analog
inputs (0 to 5 V input) are available on
the Pontech board. 

Digital outputs from the Pontech
board control a transistor that switch-
es a motor control relay on or off to
control the DC gear motors that drive
the Rovervac. Each motor is con-
trolled by two double-pole, double-
throw relays. One relay is the on/off
power switch for a motor. The other
relay is forward-reverse switch for the
motor. The relay control board also
contains a voltage divider network to
reduce the ultrasonic transducer out-
put to a level that is acceptable to the
Pontech control board.

The Pontech SV203 is a PIC16C73
microcontroller-based servomotor con-
trol board that takes serial data from a
host computer and outputs pulse width
modulated (PWM) signals to control up
to eight servomotors (see Photo 6). The
board also includes a five-channel A/D
port for receiving 0- to 5-V inputs. 

I used simple commands in this proj-
ect. Let’s go through a number of them.
The BDn command selects the board;
the n represents the board number. It is

possible to chain up to 255 of these
boards together. The next command,
BD0, overrides the board ID number and
allows any boards connected to the seri-
al port (I have only one) to be enabled.

The SVn command selects the servo
pins to operate on. Here, n is a num-
ber between one and eight. Mn moves
the servo to an absolute position from
zero to 255, which moves the servo-
motor through 180°. Before a servo pin
can be used for digital (rather than
PWM) purposes, Mn must be set to M0.

I use the PSn command to set a
servo pin. PS1, for example, causes
pin 1 to go high. Conversely, PCn
clears a servo pin, hence PC1 causes
pin 1 to go low. Another command,
Adn, gets a digital value from zero to
255 from analog input pin n.

Now that you know the commands,
I’ll focus on the rest of the software. The
programs for HotPaw BASIC are writ-
ten in Palm’s Memo Pad. To be a soft-
ware listing, the first line of the memo
must start with “#” and end with
“.bas”. For example, the program I
wrote is titled #zzz3a2.bas (download
it from the Circuit Cellar web site). A
handful of details should give you a
better picture of what’s going on here. 

Line five disables the power-saving
auto-shutdown feature of the PDA.
Lines 15 and 20 open up the commu-
nication port. Line 30 causes the
motors to turn on for forward direc-
tion and the ultrasonic servo to turn
on for the tail to go down. 

With command BD0, you enable the
board. SV7 M0 PS7 causes pin 7 of the
Pontech board to go high. This turns on
a transistor (relay board CR2), which
activates relay MR1 (see Photo 7). SV8

Photo 4—As you can see, I use a micro servomotor to
rotate the ultrasonic transducer.

19″ Diameter
2.75″

2″

5″

Figure 2—The major cutout features for the 0.25″ thick
acrylic base are illustrated in this drawing.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3c6beea4
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M0 PS8 causes pin 8 of the board to go
high. This turns on a transistor (relay
board CR1), which activates relay
MR2. Relay MR2, when energized,
allows power to go to the contacts of
relay MR1. Relay MR1 is energized, so
12 V (+M) goes out on line M1B to the
positive terminal of the first motor. 

The line SV6 M0 PS6 SV5 M0 PC5
causes MR4 to be energized and MR3
to be not energized. This results in 12 V
(+M) going out on line M2A to the
negative terminal of the second motor.
The first and second motors must
turn in opposite directions to move
forward. SV2 M250 causes the tail to
go down. Line 70 moves the ultrason-
ic servo to the center position (point-
ing to the front). Line 100 retrieves
the distance reported by the pinging
of the ultrasonic transducer board. 

The rest of the program evaluates
ultrasonic readings and responds
accordingly. If an object is detected,
the Rovervac starts to rotate (begin-
ning at line 430) and the tail goes up
(line 465). If no objects are detected,
control is returned to line 30 and the
tail goes down.

SETTING UP
To mount devices to the acrylic

base, drill holes slightly smaller than
screws and thread in the screws (tap-

ping into the acrylic). I
used hook and loop fasten-
ers to attach the Palm
m100 and the vacuum to
the base. For the power
supply, I used separate
sources whenever possible
to avoid noise problems.
This simple approach
resulted in 17 batteries on-
board the device. They
break down as follows: the
Pontech controller board
uses 6 V (four AA batter-

ies), the Palm m100 uses 3 V (two
AAA batteries), and the ultrasonic
detector requires more than 15 V (two
9-V batteries). An internal lead acid
battery does the trick for the vacuum
cleaner, which needs many amps at
6 V. Finally, the relay control board
uses 6 V and the drive motors use 12 V
for a total of eight C batteries.

Now that it’s built, you have to
return to the obligatory question: Is the
Rovervac practical today? The answer
is not yet. I installed the batteries to
the Pontech control board because

Figure 3—From the top, you can see the wiring of the Pontech SV203
controller board. It is part of the interface electronics.

Photo 6—A null modem adapter and Palm Hotsync
cable are attached to the Pontech controller board.

there is no on/off switch. To use the
device, I turn on the Palm m100 and
start the software. Next, I plug in the
ultrasonic batteries. At this point, I
turn on the vacuum and then insert
the relay/motor batteries. The vacu-
um will run for about 12 min., at
which time all of the other batteries
need to be pulled unless you like pur-
chasing 16 alkaline batteries at a time. 

Fortunately, the future looks better.
I am currently working on “find
home” and recharge additions to the

Photo 5—The flexible attachment that comes with the
vacuum is screwed into the acrylic base. Spacers can
be used with the vacuum brush to obtain the brush
height that you desire.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3bcc2f39
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SOFTWARE
To download the code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2002/141/.

SOURCES
HotPaw BASIC
www.hotpaw.com 

Palm m100 PDA
Palm, Inc.
(408) 878-9000
Fax: (408) 878-2750
www.palm.com

SV203 Controller board
Pontech
(877) 985-9286
(413) 235-1651
www.pontech.com

Mike Rigsby, PE, is manager of the
design team for the Department of
Transportation in Lee County, Florida.
Mike is an electrical engineering
graduate of Vanderbilt University.
He wrote Verbal Control with
Microcomputers as well as published
numerous magazine articles. His
interest in robotics landed him a spot
on a French Documentary, “Robots,
Man’s Best Friends?” and a recent
interview with the Miami Herald.
You may reach Mike through his web
site at www.misterengineer.com.

Photo 7—The relay control unit is a soldered, hand-
wired prototype board.

Figure 4—The relay driver and analog interface board provide power control to the wheel drive motors and volt-
age reduction for the ultrasonic input.

Rovervac. The vacuum cleaner volt-
age can be easily monitored through a
spare analog input on the Pontech
control board. Another relay (FYI:
there are outputs to spare) can shut
down the vacuum. 

When the vacuum is off, the
Rovervac needs to find its way home.
It can already get around obstacles, so
wandering about isn’t a problem.
Adding infrared receivers to the ultra-
sonic rotating beacon would allow
the Rovervac to stop and search for a
homing beam. The Rovervac could
then rotate to the beam position and
head to the charging station. 

Exactly how will the Rovervac con-
nect to a charging supply and feed all
of the multiple voltage sources? The
answers may surprise you. Perhaps
I’ll write a follow-up to conclude this
project after I tackle the additions. I

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeec52f
http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeec52f
http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeec1ec
ftp.circuitcellar.com/pub/Circuit_Cellar/2002/141/
http://www.hotpaw.com
http://www.palm.com
http://www.pontech.com
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ave you ever
thought of convert-

ing an RC car into a
robot? Dusting off an old

toy from the back of your closet and
adding a microprocessor and some
sensors is an appealing and inexpen-
sive route to building a robot. But the
task may be daunting if your experi-
ence is limited. Robots are notorious
for requiring expertise in diverse disci-
plines. Electrical engineering, mechan-
ical engineering, and programming are
just some of the relevant fields. 

Still, maybe you’d take the plunge
and actually build that robot if it were
just a bit easier to get started, if you
could discover the right electrical and
software modules to simplify the job.
It was with the thought that many
other people find themselves in this
exact situation that we set out to cre-
ate our entry for the Circuit Cellar
Design Logic 2001 contest sponsored
by Atmel. We devised an electronics
package called the Robot Conversion
Kit (RoCK) that transforms an RC car
into an autonomous robot.

In this and the next few issues of
Circuit Cellar, we will describe how
to convert a toy into an autonomous
robot. Because our aim is to pass on a
deeper appreciation of the RoCK rather

than a simple recitation of its features,
schematics, and code, we will explain
the goals we pursued, principles that
guided us, and specifications we devel-
oped. In subsequent articles, we will
describe how we realized our aims by
probing deeper into the hardware and
software of the RoCK. We will illus-
trate how modern methods of robot
programming can extract great power
from modest hardware.

DESIGN GOALS
Our desire as authors and robotics

professionals is to promote wider
understanding of robotics. As practi-
tioners of the field, we know that
understanding robotics requires building
robots, writing programs, and observ-
ing robotic behavior. Unfortunately,
few newcomers take the initiative to
study robotics if the available learning
tools are overly expensive, needlessly
complicated, or insufficiently power-
ful to teach sophisticated lessons. To
address these concerns, we required
that our scheme be inexpensive, easy
to use, and sophisticated.

LET’S RoCK
We will proceed with a more sys-

tematic exposition of our design, but
to better understand the development
of our story, let’s first jump ahead and
see what a RoCK-powered robot can
do (see Photo 1). Suppose that you
have already chosen a mobile base,
removed the factory-installed receiver
circuit, and attached a RoCK module.
At power-up, your RoCK-enabled
robot, call it RoCKbot, plays a wake-
up tune. At the same time, RoCKbot
displays a pattern on its LEDs that
indicates which of the 16 possible
tasks the robot will execute. You
select the Chicken task. 

RoCK Specifications

h
Designing robots can
be a daunting task
that requires electrical
engineering, mechani-
cal engineering, and
programming skills.
To make the process
easier, Ben and
Joseph used an AVR
AT90S8535 to help
convert a radio-
controlled car into an
autonomous robot. 

Joseph Jones &
Ben Wirz
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Sensing
Computation
Actuation
Programming and
 monitoring

Figure 1—A robot is a device that connects sensing to
action in an intelligent way. Robot builders must be able
to program the robot. Builders benefit greatly from
access to the robot’s internal state.

Part 1: Overview of a Winning Robot Kit
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robot must have a means of locomo-
tion or actuation so that it can inter-
act with the world. And third, a robot
must have a computing element to
enable complex (and hopefully intelli-
gent) connections between its sensors
and actuators. The more sensors and
actuators a robot has, the richer its
potential interactions with the world.

A useful robotic system must address
two practical matters. One, the system
has to provide some method to program
the robot. And two, you need a way to
monitor the robot’s internal state.
Viewing the state of the robot, including
sensor readings, can help to explain
what’s going wrong when the robot
behaves in strange, unexpected ways.

Implementing a low-cost robot
requires making many choices.
Deciding which programming scheme
to use is a critical choice. In recent
years, behavior-based programming has
become dominant in mobile robotics.
This dominance has come about
because behavior-based programs have
demonstrated an ability to produce
robust responses even when the robot
encounters unanticipated situations.
Further, these programs tend to be
miserly in their consumption of compu-
tational resources. Using a behavior-
based scheme can help the RoCK
achieve both sophisticated control and
low cost. Because this scheme required
little processing power, the RoCK can
function well with only a modest 8-bit
microcontroller, thus minimizing the
cost of the computation system.

Before putting RoCKbot on the
floor, command maximum speed by
twisting the dial all the way to the
left. When it’s set free, RoCKbot races
across the floor toward the wall. At
the last second the robot beeps and
swerves away. RoCKbot then slams
squarely into a narrow chair leg that
the infrared (IR) obstacle sensors failed
to detect. After about a second of
futilely pushing against the chair, the
robot backs up, spins in place, and
then moves forward in a new direction.

Although it tries to avoid you, grab
RoCKbot as it speeds by. Press the user
button and twist the dial until the
LEDs display the pattern for the Roach
behavior. In a darkened room, place
RoCKbot in the middle of the floor.
RoCKbot waits patiently. When the
room light is switched on, RoCKbot
races about the floor, homing on the
darkest spot. Safely concealed in the
shadows, RoCKbot comes to a halt.

By connecting a serial cable between
RoCKbot and your computer, you can
display readings from the sensors of
the RoCK and issue commands to
RoCKbot’s motors. You create a new
task by selecting new values for the
internal parameters and stringing
together the built-in behaviors of the
RoCK. You can then select the newly
programmed task, now stored in EEP-
ROM, using the dial. 

Comfortable with your understanding
of the behavior-based programming
scheme RoCK employs, you can dis-
pense with the built-in code. An exter-
nal programmer and compiler let you
replace the code in the flash memory
of the RoCK with custom code of your
own. A built-in connector makes it
possible to add new sensors and actua-
tors and control them with the new
code. The abilities of the RoCK grow
as your understanding deepens.

DESIGN PRINCIPLES
How do we achieve our goals of low

cost, ease of use, and sophistication of
control in a practical device? We start
with a careful definition of a robot
and the elements essential to all
autonomous robots.

A computer program inhabits a vir-
tual world where the rules are certain
and unchanging. This is not so for a

robot. A robot operates in the physical
world where noise is present in every
measurement, where intended actions
have uncertain results, and where the
robot must compute a safe response
even in situations you didn’t antici-
pate. These cruel facts frame the fun-
damental realities of robot design. 

Thus, to function in the real world,
a robot, like animals and people, must
perceive key aspects of its environ-
ment. The robot then must move or
otherwise act. The robot must con-
nect its perceptions to its actions
intelligently. Hence, a useful defini-
tion of a robot is a device that oper-
ates in the real world and connects
sensing to actuation in an intelligent
way (see Figure 1).

This basic definition suggests some
components that all robots share. First,
a robot must incorporate one or more
sensors through which it can perceive
the world outside of itself. Second, a

Figure 2—This bottom view shows the two major drive
configurations. A typical drive/steer base (left) has two
driven wheels pointing in a fixed direction and two pas-
sive wheels that can be steered. Differential drive
bases (right) have two wheels whose velocities can be
independently controlled. Differential drive robots often
use a caster for balance.

LED Task Description

0 Theremin Differential light levels striking the photocells determine beeper frequency
1 Dance The robot moves in a programmed pattern while playing a tune
2 Wimp The robot beeps and retreats from anything that comes near
3 Schizoid The robot drives around erratically but tries to avoid collisions
4 Pounce The robot sits quietly until an object comes near, and then crashes into it
5 Moth The robot homes in on the brightest light
6 Mouse The robot follows the nearest wall
7 Chicken The robot moves in a straight line but attempts to avoid collisions
8 Roach In a lighted room, the robot finds a dark area and stops
9 Joystick You control the robot’s motors via the serial interface
10 User 1 User-programmable task number one
11 User 2 User-programmable task number two
12 User 3 User-programmable task number three
13 User 4 User-programmable task number four
14 DiffSel Helps you correctly connect a differential drive base
15 SteerSel Helps you correctly connect a drive/steer base

Table 1—These 16 named tasks can be selected using the on-board user interface of the RoCK. The left-most col-
umn indicates the number displayed in binary by the LEDs during task selection.



However, some bases make
better robots than others (see
Figure 2). One common type of
RC base uses a drive/steer con-
figuration. Such a base has one
motor to move the robot for-
ward or back and a separate
motor to point two passive
wheels in the desired direction
of motion. The difficulty such a
base creates becomes apparent
anytime the robot wanders near
confining obstacles. Lacking the
ability to spin in place, a base
using the drive/steer configura-
tion can easily become trapped
by even a sparse arrangement of
obstacles (see Photo 2). 

A second type of RC car incor-
porates differential drive. In this
configuration, the differential

velocity of wheels on either side of the
robot controls the motion. Tracked RC
vehicles use the differential drive con-
figuration almost exclusively. The
capacity to spin in place gives the dif-
ferential drive robot the ability to extri-
cate itself from almost any situation.
Significantly, a differential drive robot
can use the same simple algorithm to
escape from a trap that it used to enter
the trap. By contrast, the algorithms
that allow a drive/steer robot to escape
tend to be arbitrary and complex. The
differential drive configuration thus
makes a more effective robot. 

RC cars that have two or three func-
tions have only a single motor. When
this motor spins in one direction, the
base moves forward. When the motor
spins in the other direction, the base
turns and backs up at the same time.
The RoCK was not designed to use
RC bases of this type. Photos 3a and b
show the RoCK with the enclosure
top removed and on, respectively.

The on-board user interface enables
the RoCK to operate without being
connected to a host computer. A
DPDT switch controls both the 9-V
logic supply incorporated into the
RoCK module and the motor battery
supply attached to the mobility base.

The illumination pattern on the four
LEDs indicates the status of the robot.
During task execution, LEDs generally
display the state of the left and right
obstacle detectors and the status of
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A connection to a host computer is
required to program the robot and
monitor its state. In implementing this
connection, we chose to move the bulk
of the interface code to the host com-
puter. After simplifying as much as
possible, we arrived at a host-initiated
serial protocol plus a low-overhead
scheme for writing data to EEPROM.

SPECIFICATIONS
The RoCK has 12 preprogrammed

tasks. You can program and store up to
four additional tasks of your own. The

piezoelectric beeper can play
user-programmed tunes of
over 100 notes. Robot trajec-
tories composed of more
than 100 path steps can be
stored and executed. The
RoCK has sensors to detect
light, obstacles, collisions,
and battery voltage. Pressing
one button and adjusting a
single dial lets you easily
configure and control the
RoCK. Connecting this
device to a host computer
enables you to monitor and
program it. Despite its high
level of functionality, the
RoCK remains an inexpen-
sive device.

Our goal was to ensure
that the RoCK could work
with as many different types
of RC bases as possible.

Another key element to
keeping the cost of our robotic
system low is to incorporate
the ubiquitous RC car. RC
cars, manufactured by the mil-
lions, are a great bargain. They
provide a mobility base that is
rugged, inexpensive, and avail-
able in a wide variety of types.

To keep costs low and make
a RoCKbot easy to build, we
sought ways to simplify the
interface between the RoCK
and its mobile base. In our
design, a total of only six wires
are necessary to connect the
RoCK to its base. Two wires
link the RoCK to the motor
battery of the RC base and two
wires go to each of the base’s
two motors. All of the connec-
tions between the base and RoCK are
implemented using screw terminals,
eliminating the need for soldering.

In addition, wherever possible we
reduced the complexity of the electron-
ics package. We chose the Atmel AVR
AT90S8535 microcontroller to support
this effort. Analog-to-digital converters
(ADCs), a comparator, and three timer/
counters are built into the 8535. These
systems allowed us to use on-chip
hardware and programming to imple-
ment features that would otherwise
require costly external components.

AVR
microprocessor

and auxiliary
circuitry

Battery
voltage

monitors

A/D expansion header

Advanced
programming

header

User
potentiometer

User
button

Piezoelectric
beeper

Display LEDs

Light detecting
photocells

IR obstacle
detection

Serial
interface

Motor driver

Collision
detection

Screw
terminal

for battery
and motors

Figure 3—This block diagram illustrates the major subsystems of the RoCK.
The sensors include light sensors, infrared obstacle sensors, voltage sensors
for the logic and motor batteries, and a motor current-based collision sensor.

Figure 4—The primitive behaviors run constantly in the software.
Each uses the present sensor values and a set of parameters to com-
pute an output for the motors. The arbiter decides which behavior is
permitted to control the motors using a priority list supplied by one of
the tasks via the task selector. The task selector also decides how the
beeper is controlled. The user tasks (programmed by you) operate in
a way identical to the other tasks except that their specifications are
stored in EEPROM rather than flash memory. The scheduler runs one
behavior after another and keeps the sensor values updated.

Task 1

Task 2

Task 10

User Task 1

User Task 4
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Task
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control

Behavior 1

Behavior 2

Behavior 8
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Arbiter
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the collision detector. During task
selection, the LED pattern indicates
which built-in tasks you’ve chosen.

The piezoelectric beeper can produce
tones of arbitrary frequency, enabling
the RoCK to play a built-in or user-
programmed tune. Additionally, the
state of certain sensors can be mapped
into the frequency played by the beeper.

The user potentiometer enables you
to experiment with the parameters that
control the robot’s behaviors. For exam-
ple, in a user task, the gain parameter
in the control loop that enables the
robot to follow a bright light can be
mapped to the user potentiometer. You
can then adjust the robot’s light-follow-
ing behavior from sluggish to neurotic.
The user button works in conjunction
with the user potentiometer to select
the built-in tasks you wish to run.

The circuit board is mounted in a
small, plastic enclosure. The enclosure
includes a compartment for the 9-V bat-
tery that provides power to the logic.
Mounting all of the sensors directly on
the board enhances
reliability. The enclo-
sure is open on one
end so that the light
sensors and IR obsta-
cle detectors have a
clear view. Four LEDs
are on the top surface
of the enclosure. Also
on this surface are the
power switch, user
select button, and the
user potentiometer.

The RoCK module
includes an RJ12 con-
nector for the serial
interface. Multi-pin
headers give access to
unused microcon-

troller ports and allow connection of a
programmer for the on-chip flash
memory. The RoCK needs enough
sensory inputs to enable a variety of
interesting behaviors. We chose the
set illustrated in Figure 3.

A dual-channel IR obstacle detection
system is included. This system is
composed of two series-connected
emitters and two independently wired
IR receivers. The receivers are sensitive
to a 38-kHz modulation frequency. The
emitter/detector pairs point diagonally
outward from the RoCK to cover the
area in front of the robot. Each receiver
detects IR radiation reflected from near-
by objects in the direction the detector
is pointed, informing the robot of
imminent collisions.

Dual diagonally mounted photocells
measure the light level in front of the
RoCK. The difference between the
light measured by the left and right
photocells enables the RoCK to home
in on a bright light source or speed to
a dark corner.

As the robot operates, the logic and
motor batteries discharge, decreasing
the voltage of each battery. The RoCK
monitors the voltage of these two bat-
teries allowing the robot to take
action if the voltage falls too low.

The AT90S8535 processor contains
8 KB of flash memory program stor-
age, 512 KB of SRAM, and 512 KB of
software-programmable EEPROM.
The chip uses the Harvard architec-
ture with separate memory spaces for
data and program storage. 

Photo 1—A robot built on a differential drive tracked
base approaches a chair leg.

Photo 2—The nonzero turning radius of this drive/steer robot can cause trouble.
If the robot comes within a turning radius of an obstacle before the sensors
detect the obstacle, a collision or a complex series of back-and-forth escape
motions may be inevitable. The circuit board is mounted directly on the RC base.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3b547311
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in parallel. Each can com-
pute an output for the
motors, typically the out-
put’s conflict. An arbitra-
tion behavior decides which
of the competing behavior
wins control (see Figure 4).

Choosing a list of behav-
iors, ordering their priorities,
and setting behavior-related
parameters specifies a partic-

ular robot control program or task (see
Table 1). The reusability of these com-
ponents enables you to store many
tasks in the robot. We’ll explain this
perhaps unfamiliar control scheme in
more detail later on in the series.

The host interface operates through
the serial interface. This gives you
access to the microcontroller’s static
RAM (which includes the control reg-
isters) and read access to EEPROM.
EEPROM write access is provided by a
small amount of included code.

WHEN WE RETURN
Now that you’ve seen the big picture

of the RoCK, we will take a closer look
at some of internal details next month.
Anyone interested in buying the RoCK
should visit our web site at www.wirz.
com/rock for more information. I

The RoCK implements a
pair of full H-Bridge motor
drivers made from discrete
NPN and PNP transistors.
The H-Bridge provides bidi-
rectional control for the two
permanent magnet DC
drive motors in the mobility
base. Motor drivers are pro-
tected from short conditions
by a PTC fuse, which resets
automatically. The fuse also serves as a
low-side current sense resistor. Voltage
drop across the fuse corresponds to
motor current consumption. During a
collision, motor torque increases sub-
stantially, thus increasing current draw,
with a resultant increase in the voltage
drop across the fuse. The built-in com-
parator of the AVR detects when the
motor current draw exceeds the current
reference, indicating a collision.

You may choose to connect the
RoCK to any of a variety of different
sized motors with differing current
requirements. To ensure reliable colli-
sion detection, you can adjust the cur-
rent trip point. This is accomplished by

SOURCE
AVR AT90S8535 Microcontroller
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

Joseph L. Jones grew up in a small town
in the Missouri Ozarks. He studied
physics at MIT and received an BS in
1975 and an MS in 1978. He took a
trip around the world, worked at the
MIT Artificial Intelligence Lab, and is
now senior roboticist at iRobot Corp.
You may reach him at jlj@irobot.com.

using a potentiometer to form a user-
set current reference voltage. Without
the over current-based collision detec-
tor, you would be left the complex
task of constructing a bumper for the
RoCK, a process known to confound
even experienced robot builders.

The RoCK uses a novel discrete com-
ponent, half-duplex, RS-232 level con-
verter to enable serial communication
while reducing cost and board space.
Given the RoCK’s modest communica-
tion needs, the limitations imposed by
half duplex are inconsequential.

In the behavior-based programming
scheme used by the RoCK, all primitive
behaviors are considered to be operating

Photos 3a and b—The circuit board and sensors are mounted in a plastic enclosure.

a) b)

Ben Wirz also grew up in a small town
in the Missouri Ozarks. He studied
physics and electrical engineering at
Washington University in St. Louis,
and graduated in 1997. He is current-
ly employed as a senior electrical
engineer by iRobot in addition to run-
ning his company, Wirz Electronics.
You may reach him at ben@wirz.com.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aef0fdf
http://www.atmel.com
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ne of my fondest
wishes is to one

day (preferably) create
or purchase a robot assis-

tant that would follow me around and
remind me of upcoming tasks while
remembering requests that I have ver-
balized throughout the course of the
day. Such a robot would be equipped
with state-of-the-art sensor technology,
and would require high-end computing
resources to cope with both the outside
world and its demanding creator. After
a thorough web search for robotics
companies equipped to provide a robot
of this caliber, I found that prices range
from $1000 for a minimal sensor suite
to upwards of $20,000 for a multi-modal
sensor suite maintained by an onboard
Pentium III-class motherboard.

Even at the $1000 price point, my
budget would be strained, so I began to
consider developing this robot in cyber
space as a mere simulacrum running
on my existing PC. This would give
me the flexibility to experiment with
a variety of robot designs, functioning
in an environment similar to the layout
of my apartment. It would also allow
me to research the use of adaptive
mobile robot software based on neural
nets and genetic algorithms without
the need for building and debugging

on a remote target platform contained
in the robot chassis. More important-
ly, I would be able to test the adaptive
effectiveness of the software by run-
ning it in an accelerated time frame,
thus simulating many days worth of
robot learning in a matter of minutes.

After a brief search on the ’Net, I
found that the commercially available
robot simulation software was also
beyond my budget, ranging from
$2000 to $5000. Thankfully, the
Rossum project was a notable excep-
tion and was actually available as
open source. This article will provide
you with an overview of the Rossum
project’s impressive capabilities along
with a sample Robot simulation proj-
ect to get you started building those
imaginary, but nonetheless impres-
sive, robot assistants.

The Rossum project is an open source
project hosted by Source Forge at
rossum.sourceforge.net and is the brain-
child of G. W. Lucas. As described on
its home page, Rossum is a project dedi-
cated to the redistribution of ready-to-
use software components. To date, its
primary focus has been the 2-D robot
simulator called Rossum’s Playhouse
(RP1). By the time of publication of this
article, RP1 should be available in
V.0.50. For more information about the
Rossum project, read the “Inspiration
for Rossum’s Playhouse” sidebar.

RP1 may be downloaded in source
and non-source forms along with a
PDF file containing user documenta-
tion that may be downloaded separate-
ly. Refer to the user documentation
for additional information on many
topics not provided in this article. The
web site also provides download and
installation instructions.

Cyber Robotics

o
If you could do all of
the testing and training
for a robot in a simu-
lated environment, you
would be able to cut
down the design time,
and therefore reduce
the development time
and cost. James intro-
duces an open-source
project that allows
you to first work with
a virtual robot. 

James Wilson
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Experimenting with Robot Simulation

Photo 1—The RP1 server renders this sample floor
plan of the “white room.”
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I/O), and whether or not logging out-
put may be combined with the log-
ging output of the server.

A second properties file configures
the operation of the RP1 server. The
most interesting option available is the
simulationSpeed entry, which allows
you to control whether your RP1 client
runs in real time or with an internal
clock that runs faster or slower than
real time. The value assigned to the
simulation speed may range from
0.001 to 1000.0 and refers to the ratio
of a simulated second to that of a real
second (simulated seconds divided by
real-time seconds). A simulation speed
value of 2.0, for example, will allow
the simulation sequence to run twice
as fast. You will find this option most
valuable when developing navigation
algorithms that apply soft computing
principles to produce adaptive behavior.
With the simulation speed running
fast, you can simulate many hours of
learning in a matter of minutes.

Precisely how fast your simulation
may run depends in part on the horse-
power of the computer(s) running the
client and server processes, along with
the complexity of your virtual robot
and simulation environment. In most
cases, factors of 10 to 20 are achiev-
able; higher values may be used to
simply direct the simulator to run as
fast as possible. When the accuracy of
the timing in the simulation is criti-
cal, it is helpful to slow the simula-
tion speed (using values of less than
one) to reduce the noise introduced by
system task management and commu-
nication overhead.

For a list of all of the defined proper-
ties file entries for the server and client,
refer to the RP1 documentation.

FLOOR PLANS
No robot simulacrum can exist

without somewhere to exercise its
sensory and locomotive capabilities.
This is where the RP1 floor plan
comes in. A floor plan, as the name
implies, is a complete definition of the
objects and characteristics of the envi-
ronment where your robot will navi-
gate. RP1 requires that you provide
this definition as a text file that con-
tains predefined tokens positioned
according to a simple grammar. 

AN OVERVIEW
From the beginning, RP1 was

intended to evolve into an open-
source collaboration. So, the overall
architecture needed to permit contri-
butions by a disparate group of devel-
opers, sometimes working in different
programming languages. To address
these requirements, RP1 was written
in Java using a client/server model.
As depicted in Figure 1, the simulator
(written in Java) acts as the server
and communicates with separate
clients using TCP/IP connections.
The clients may be viewed as imple-
mentations of virtual robots or
autonomous agents that, because they
run as separate processes, may be
written in any language. 

The RP1 protocol deliberately
avoids Java-specific features such as
Java object serialization, and depends
on data primitives that can be repre-
sented in most modern programming
languages. In fact, I wrote an RP1 API
in C to allow the RP1 to communicate
with Win32 and Windows CE clients.

RP1 is capable of simulating the 2-D
environment of the robot and its body.
The environment is represented as a
floor plan defined using a specialized
syntax that describes the walls, tar-
gets, and obstacles of the 2-D environ-
ment. The robot body is represented
as a basic geometric form with a pre-
defined wheel system, and can be
equipped with contact, range, target,

and paint sensors. When the simula-
tion is running and the client is in
communication with the RP1 server,
your robot is accurately portrayed as
an on-screen graphic moving around
in its 2-D environment. 

RUNNING RP1 SAMPLE CLIENTS
In order to run the RP1 server, the

Java Virtual Machine (JVM) must have
already been installed. If this is the
case, you should be able to run the
batch files provided for the fire fighter
and line tracker sample RP1 clients.
The command in each batch file con-
forms to the syntax of the following:

java Server �p [name of RP1 
properties file].ini server

java Server �cp [name of the 
RP1 simulator jar file] �p 
[name of RP1 properties 
file].ini

The first command is used with
the RP1 source distribution. The
second command is used with the
non-source distribution containing a
Java jar file. The properties file refer-
enced on the command line provides
additional information on how to
handle your client. Many options
can be configured from the proper-
ties file, including the name of your
client’s main Java class file, how to
communicate with your client
(either internally or using network

Listing 1—Two types of statements, specifications and declarations, are used to define an RP1 floor plan.

/*
Specification syntax:

{specification name}: {parameter name}, [parameter name], 
[parameter name], ...;

Example specification indicating that object dimensions are in meters.
*/

units: meters; 

/* 
Declaration syntax:

{object class name} {object name} {
{specification name}: {parameter name}, [parameter name], ...;

}

Example declaration indicating that object dimensions are in meters.
*/

wall a { geometry: 0.0, 0.0, 3.0, 0.0, 0.05; }
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Listing 1, defines an object of type
“wall” named “a”. The beginning coor-
dinates are (0.0, 0.0) meters (meters is
used assuming that the unit specifica-
tion at the top of the code is in effect)
and ending coordinates of (3.0, 0.0)
meters. The thickness is 0.05 meters. 

Six types of objects may be defined
with a declaration, including a wall,
target, floor paint object, placement,
nodes, and links. A wall declaration
defines a rectangular wall and con-
tains a geometric specification defin-
ing the coordinates of the beginning
and ending of the wall and its thick-
ness. A target declaration describes a

Two types of statements,
known as specifications and
declarations, are defined for
floor plan files. Specifications
may appear as standalone or
contained within the body
of a declaration. In stand-
alone form, specifications
define global characteristics
of the floor plan, such as the
units used for the dimen-
sions of the objects described
elsewhere in the floor plan
file. Listing 1 provides the
syntax of a specification and
an example indicating that the dimen-
sions of the objects defined throughout
the floor plan file are in meters.

Declaration statements are used to
describe floor plan objects. In this con-
text, the term object is applied broadly
to refer to any localized area of the floor
plan that may be described by an RP1
declaration. It contains the object type,
name of the object (used later when
referring to the object in other declara-
tions), and one or more specifications
(described above) to define the charac-
teristics appropriate for the object type
named in the declaration. The declara-
tion, which appears at the bottom of

circular region of the floor
plan that the robot may
detect with a target sensor.
It effectively provides a
means of modeling a point
source of visible or infrared
light, although RP1 doesn’t
provide a target sensor for a
specific wavelength of light.
Considering the object-ori-
ented design of the RP1
library, it would be simple
to define such a sensor (I’ll
come back to this).

A placement object
defines a location(s) in the floor plan
that may act as a reference point in
your RP1 client code for positioning
and orienting the robot. To begin the
simulation, you must position the
robot at a placement object. A place-
ment declaration is defined by four
specifications as depicted in the sample
white room floor plan file in Listing 2.
The first three values of the geometry
specification define the x and y coordi-
nates of the center of the robot when
positioned at this placement and the
orientation of the robot (in degrees).
The last value defines the radius of
the home plate shape used to depict
the location of the placement (see
Listing 2 and Photo 1).

Floor paint is an object type that
allows a region of the floor plan to be
defined as a polygon. If the robot sim-
ulacrum is equipped with a special-
ized sensor, an event is generated
when it enters this region, thus,
allowing your navigation algorithms
to alter its path based on whether or
not a particular region has been
entered. The geometric specification
may contain an arbitrary number of
points allowing irregularly shaped
regions to be defined. 

You may also associate the region
with an integer value by using the
optional region specification. This
value may be used later to indicate that
a paint sensor is able to detect floor
paint only with the specified region
value. By using multiple overlapping
regions, you also may represent areas
of curved lines or tracks. The line
tracker floor plan (contained in the file
FloorPlans\Line Track.txt) clev-
erly uses two regions of the same

The inspiration for the RP1 sim-
ulator came about during an
attempt to develop algorithms for
the Trinity College Fire-Fighting
Home Robot Contest (developed
by Jake Mendelssohn and David
Ahlgren), one of the most challeng-
ing and elegant of the annual robot
competitions at various universi-
ties. The idea of the contest is to
exercise, on a small scale, the
basic functions that would be
required of a robot fire fighter sta-
tioned in a warehouse or home. In
the contest, a small robot searches
a mock house to find and extin-
guish a fire represented by a light-
ed candle. Scoring is based on
speed, reliability, and consistency. 

One of the contest founders,
Jake Mendelssohn, stresses that
the Trinity competitors are true
robots, the key element being their

capacity to perform autonomously.
Trinity competitors are not
remotely operated vehicles, but are
driven by software implemented on
PCs or onboard processors. 

The elegance of the concept for
this competition is in the broad set
of problems—sensing, navigating,
and interacting with its environ-
ment—for real-world robots while
still permitting competition by robot
builders at many different skill lev-
els. Student-level teams have fielded
successful entries, yet experienced
engineers and academicians still find
that the contest represents a chal-
lenging and interesting problem.

The 2001 contest featured more
than 100 different robots. Contests
in the Trinity format have sprung
up across the U.S., Europe, and as
far away as Buenos Aires, Tel Aviv,
and Beijing. 

INSPIRATION FOR ROSSUM’S PLAYHOUSE

Rossum
(Java package)

Client
(C/C++)

RP1 Client
Client
(Java)

Simulator
(Java package)

Rossum
(Java package)

RP1 Server

TCP/IP connection for
transferring messages 
in the Rossum protocolRossum package used

in the implementation
of the server (simulator)
and client

Client code written in
C/C++ communicates
directly with server
process

Figure 1—The RP1 client/server architecture allows client processes to run on a
remote or local host to communicate with the RP1 server over a TCP/IP connection.
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shape, one contained within the other,
to create the appearance of a racetrack,
which the robot dutifully tracks as it
navigates the floor plan.

Node and link objects are provided to
support floor plan notation. Effectively
this allows you to draw on your floor
plan with points that appear with desig-
nated labels and lines to interconnect
them (lines are optional). This is partic-
ularly handy if you’re creating a floor
plan that is defined to scale and you
need some means of visualizing the
progression of the robot as it proceeds
toward a particular check point at a
precise number of meters from your
starting point. The Trinity Fire-Fighting
Robot Contest floor plan contained in
the file FloorPlans\trinity2001.
txt, is an excellent example of the use
of floor plan notation to mark the ideal
path around the walls and the locations
at which fire detection should occur.

After you define the robot floor
plan, you’ll need to decide what sort
of locomotion and sensor capability
to give your robot simulacrum. As of
this writing, RP1 provides support
for only the classic two-wheel actua-
tor with differential steering. This

can be a serious limitation if your
navigation algorithms depend on a
particular feature of your wheel
actuators (e.g., holonomic or hexa-
pod drive systems). If you’re careful,
however, and develop the navigation
algorithms for your physical robot to
use some sort of software abstraction
of your wheel actuators and its asso-
ciated steering mechanism, this may
not be a problem.

The robot body may be any simple
(nonintersecting) polygon and can be
equipped with contact, range, target,
and paint sensors. The contact sensor
provides an indication of physical
contact with walls defined in the floor
plan and may be used to model bump
switches located on the outer perime-
ter of the robot platform. 

The range sensor provides an indica-
tion of an obstacle within a maximum
range as defined by your RP1 client soft-
ware. It may be used to model infrared
or optical sensors. This range is divided
into a series of equally sized bins, each
of which produce separate notification
events, thereby controlling the resolu-
tion of the simulated range sensor and
the number of events generated as an

Listing 2—For the “white room” sample floor plan, these are the RPI declarations and specifications.

/*  
White Room

Sample floor-plan file for Rossum's Playhouse
This encoding is based on the RP1 rev 0.4 floor plan format.

*/

units: meters;
caption:"White Room (RP1 rev. 0.4)";

wall a { geometry:   0.0,   0.0,     3.0,   0.0,   0.05; }
wall b { geometry:   3.0,   0.0,     3.0,   3.0,   0.05; }
wall c { geometry:   3.0,   3.0,     0.0,   3.0,   0.05; }
wall d { geometry:   0.0,   3.0,     0.0,   0.0,   0.05; }

wall e { geometry:   1.0,   2.0,     2.0,   1.0,   0.025;}

target goal {
label:     "Goal";   // F is for fire
geometry:   0.4, 0.4, 0.25;
color:      red;
lineWidth:  3;

}

placement home {
label:     "Home";
geometry:  2.5, 2.5, 225, 0.275;
color:     green;
lineWidth: 3;

}

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aed9eed
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obstacle is approached. Figure 2 illus-
trates the use of bins when defining the
characteristics of a range sensor.

Target sensors are similar to range
sensors, but differ in that they are
used for detecting only target objects
(defined using the target declaration in
the floor plan file). Target objects
model a point source of light; the tar-
get sensor is designed to detect this
light within the area of a specified
arc. Bins are used for target sensors as
they are in range sensors, but in two
distinct dimensions. The first dimen-
sion divides the arc and the second a
range from the sensor to the target.
Figure 2 depicts the existence of bins
separately dividing the arc and range
of the target sensor.

Paint sensors model a sensor specifi-
cally oriented to detect a region of color
on the floor of the exercise area, as in
an optical sensor pointed toward the
floor to trace the length of a dark line.
When the robot enters or exits a poly-
gon, an event is generated. The line
tracker sample RP1 client uses paint
sensors to trace a curved line around
the exercise area.

The paint sensors also allow you to
tune the sensor to particular regions.
In the floor plan, you may supply an
optional region specification and give it
an integer value. In the RsBody
PaintSensor class, you can use the
setRegionSensitivity command to
tell the sensor that it can detect paint-
ed areas only with that region value.

RP1 SIMULATION CLIENTS
RP1 is designed using a client/server

architecture in which the robot simu-
lacrum runs as a client process of the
separately running RP1 server process.
The easiest way to write an RP1
client is to write it in Java using the
Rossum package, contained in the file
rossum.jar. (The entire RP1 project
is also provided in a separate jar file
named for the version of the software,
such as sim049.jar.) 

The Rossum package provides the
class hierarchy used for the imple-
mentation of the RP1 simulator. In
addition, it provides many base classes
that assist with certain setup and
housekeeping functions required of
RP1 clients. Thankfully, the client/

Event/Request Object (Java) Event/Request Code (C/C++) Description

RsPaintSensor EVT_PAINT_SENSOR This event is generated when your robot’s paint sensor detects a transition into or out of a 
defined region of floor paint, declared in your floor plan file. 

RsRangeSensorEvent EVT_RANGE_SENSOR This event is generated when a range sensor on the robot has undergone a state change 
caused by detection of an obstacle in the floor plan (e.g., wall). The frequency of the state 
change, effectively the resolution of the sensor, is controlled by the number of bins dividing up
the maximum sensor range (discussed earlier in this article).  

RsTargetSensorEvent EVT_TARGET_SENSOR This event is generated when a target sensor on the robot has undergone a state change 
caused by detection of a target object in the floor plan. The frequency of the state change, 
essentially the resolution of the sensor, is effected by bins in both the range and width of the 
sensor’s active area.  

RsContactSensor EVT_CONTACT This event is generated when the defined region of a contact sensor on the robot has under-
gone a state change, caused by either contact (collision) with an obstacle or by removal of 
contact (release of pressure on the sensor).  

RsMotionHaltedEvent EVT_MOTION_HALTED This event is generated when the motion of the robot has ended, either because a previous 
request for motion (RsMotionRequest/REQ_MOTION) has been completed, or because of a 
collision with an object in the floor plan.  

RsMotionStartedEvent EVT_MOTION_STARTED This event is generated when the motion of the robot is started in response to an 
RsMotionRequest/REQ_MOTION request.  

RsTargetSelectionEvent EVT_TARGET_SELECTION This event is generated whenever a request is received by the simulator to select a particular 
target (RsTargetSelectionRequest/REQ_TARGET_SELECTION), whether or not the target is 
already selected. This is commonly used to allow target selection through the GUI, allowing 
the robot (client) to react in someway when the event is received.  

RsPlacementEvent EVT_PLACEMENT This event is generated after the RsPlacementRequest/REQ_PLACEMENT request has been 
processed by the simulator and the robot has been repositioned to the coordinates and orienta-
tion of the placement object.  

RsPositionEvent EVT_POSITION This event is generated in response to a RsPositionRequest/REQ_POSITION request and 
provides the absolute position of the robot in the floor plan. In the context of a robot navigation 
algorithm use of this request and event would of course be considering cheating.  

RsHeartBeatEvent EVT_HEARTBEAT This event is produced periodically at the time interval specified in the 
RsHeatBeatRequest/REQ_HEARTBEAT request.  

RsTimeoutEvent EVT_TIMEOUT This event is produced after a period of time has elapsed that is specified in the 
RsTimeRequest/REQ_TIMEOUT request.  

RsPlanEvent EVT_PLAN This event is generated in response to an RsPlanRequest/REQ_PLAN request to obtain a copy 
of the fully parsed floor plan file. An abstract of the floor plan, represented as an object in 
Java or as a structure in C/C++, is provided in the event object/structure.  

RsMouseClickEvent EVT_MOUSE_CLICK This event is generated when the end user clicks in an area of the floor plan. It is particularly 
useful when you would like the robot to respond in some way to this clicking action. The 
Demozero sample RP1 client (activated through FireFighter.bat) uses this event to cause the 
robot to reorient itself or move to a location in line with the position of mouse click, 
depending on which button was pressed.  

Table 1—RP1 communicates with its clients through the events listed here. Certain events are generated in response to a specific request and others are sent unsolicited.
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server architecture of RP1 makes it
possible to write RP1 clients in any
language that’s capable of communi-
cating over a specified IP port. 

Also provided are RP1 client libraries
for the Windows desktop and Windows
CE. Development of a client library
for the Palm OS is currently underway.
Now, let’s examine sample RP1 clients
written in Java and C/C++ for the
Windows and Windows CE platforms.
Considering that RP1 was implement-
ed in Java, it will of course run on
other platforms with Java support, but
I’ll focus on clients for the Windows
desktop and Windows CE devices.

EVENTS AND REQUESTS
The primary method for your client

to communicate with the RP1 server
is through predefined requests. Your
client sends requests to the server to
obtain certain information about the
state of the robot or to cause actuator
movement. As we will soon learn, cer-
tain requests induce certain events to
be generated by the simulator and
received by your RP1 client. At other
times a request may not produce the
expected event (e.g., when the robot is
stuck in a corner and unable to com-
ply with your client’s request for
motion). Unsolicited events are pro-
duced by the server and sent to your

client when something happens in the
robot’s virtual world that might require
your client code to react. Table 1 con-
tains a list of events described in
terms of their associated requests.

The primary responsibilities of any
RP1 client are initialization, event
registration, and event handling (see
Figure 3). After the client is initial-
ized, its registered event handlers will
be called when the associated state
change occurs for the specified event.
If the client is a simple one, it may be
called only for the most basic start
and stop events, as is the case for the
sample Drunk client described next.

Let’s begin our discussion of how to
write an RP1 client by examining
Drunk, a sample Java RP1 client (pro-
vided in the current RP1 download).
You don’t have to know Java because
I’ll describe the code in terms of the
functional requirements common to
all clients written in any language.

AN RP1 SAMPLE CLIENT
Drunk, as its name implies,

performs a random walk
about its environment using
two events and one request.
Motion is initiated relative
to the robot’s current position
by sending an RsMotion
Request command to the
server. The server responds
with an RsMotionStarted
Event to inform Drunk that
motion has actually begun,
effectively confirming that
the robot was not stuck.
Later, when the robot makes
contact with an obstacle or
has successfully moved (or
pivoted) the requested dis-
tance (randomly derived by
Drunk), an RsMotion
Halted event is sent by the
server to Drunk. 

Drunk’s event handler then calcu-
lates the next randomly derived dis-
tance and orientation and sends
another RsMotionRequest command
to produce movement. Once again, an
RsMotionStarted event is generated
after the server completes its processing
of the motion request and movement
has begun. Drunk’s handler for this
event simply increments certain vari-
ables used to track the progress of the
simulation. Figure 3 illustrates the mes-
sages exchanged between the Drunk
client and RP1 server in a typical nav-
igation sequence when Drunk collides
with a wall, something it does often.

The DrunkMain class inherits from
RsClient (principal client-communi-
cations class of RP1) for initialization
and event handler registration func-
tionality (see Listing 3). DrunkMain
uses Java’s primary entry point for an
application, the main method, to call
the initialization method in the
RsClient parent class. This method
will load the rossum.ini properties
file in the Rossum package and will
attempt to connect to the server. It is
not uncommon for the initialize
method to be overridden in the client’s
derived class to allow a local proper-
ties file to be loaded before calling the
initialize method of the parent
class. An example of this can be found
in the Line Tracker sample client locat-
ed in linetracker/LtMain.java.

After the initialize method runs
successfully, the run method is called.
The first task performed by this method
is to construct the body of the Robot
simulacrum by calling the build static
method in the ClientZero object (locat-
ed in clientzero/ClientZero.java).
ClientZero provides utility functions
commonly used in the implementation
of other clients. In this case, you’re
borrowing the body design produced by
ClientZero and encapsulated in the
RsBody object value returned by the
build method. (RP1 body construction
code is discussed in more detail when
the client code written in C is present-
ed.) After the body is constructed, the
sendBodySpecification method,
implemented in the RsClient parent
class, is called. This method causes
the contents of the body object to be
encoded and transmitted to the server. 

Width bins divide
the angle of view

Range bins divide 
the distance

Figure 2—The resolution of the range sensor is divid-
ed into width bins for the angle of view and range bins
for distance from the obstacle.
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Figure 3—In terms of the message sequence for an active simula-
tion, the sample RPI client and server relate to each other as shown.
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As mentioned earlier, the RP1 server
communicates with a client by sending
events. After the body is established,
DrunkMain registers event handler
classes so that it may respond to those
events. The methods, addMotion
HaltedEventHandler and addMotion
StartedEventHandler, register event

handlers for the MotionHaltedEvent
and MotionStartedEventevents.
The Drunk client handles these events
simply to detect when the robot simu-
lacrum has started moving and stopped
moving. Next, the addPlacement
EventHandler method is called to
register an event handler for the

PlacementEvent event. This handler
responds to the placement of the robot
at its starting position by generating
the first randomly derived movement. 

Recall that when creating an RP1
floor plan, a placement object may be
declared in the floor plan text file. The
Drunk client uses the location of this
placement object as its starting position
for the simulation sequence. When the
sendPlacementRequest method is
called at the end of the run method,
the robot immediately moves to the
placement object called home (declared
in the floorplans/trinity2001.txt file),
which enables the DrunkPlacement
EventHandler event handler object.

The last line of the DrunkMain.run
method contains super.run(), which
calls the run method of the parent
class. This method never returns and
continually decodes data received from
the server. In some cases, this data is
integrated into event objects that are
then passed to the event handlers.

To understand how event handler
code is written in Java, let’s examine
the source for the DrunkPlacment
EventHandler object (see Listing 4).
Event handler objects inherit from a
class named for the associated event,
RsPlacementEventHandler in this
case. The RsTransactionHandler
interface is included in the inheritance
hierarchy and requires that all derived
event handler objects implement a
processTransaction method. This
method casts the RsTransaction par-
ent class to the derived RsPlacement
Event class (defined by this event
handler) and calls the process method. 

At this point, the absolute coordi-
nates of the placement object are
obtained from the RsPlacementEvent
object (referenced in the event param-
eter) and the setMotion method is
called to instantly position the robot at
these coordinates. The RsMotionNull
object is passed to cause all previous
coordinates used for relative positioning
to be ignored. Then, the nextMove
method is called (see Listing 3).

Movement of your Robot simulacrum
is accomplished by sending a request to
the server. Movement occurs relative to
the current position of the robot for a
more realistic model of how real move-
ment would be commanded. The use

Listing 3—The Java source code implements the main routine for the sample RP1 client, Drunk, and regis-
ters certain event handlers. The simulation is initiated with a call to the sendPlacementRequest method.

public class DrunkMain extends RsClient
{
//Implement a main to allow this class to serve as an application.
public static void main(String args[]) throws IOException

{
DrunkMain c = new DrunkMain();
c.initialize(); //throws IOException if unable to reach server
c.run();

}
//code omitted for brevity

public void run(){

body = ClientZero.build();
sendBodySpecification(body);

addPlacementEventHandler(newDrunkPlacementEventHandler(this));
addMotionHaltedEventHandler(newDrunkMotionHaltedEventHandler
(this));
addMotionStartedEventHandler(newDrunkMotionStartedEvent 
Handler(this));

try{
int seed = rsProperties.extractInt("seed");
log("DrunkMain establishing random series with seed 
seed"+seed);

random = new Random(seed);
}catch(RsPropertiesException rpe){

random = new Random();
}

sendPlacementRequest("home");

super.run();
}

protected long nextMove(){

RsMotionRequest  r;
double           x, y;
boolean          pivot;

do{

pivot = (random.nextDouble()>0.75);
if(pivot){
x=2*random.nextDouble()-1.0;
y=2*random.nextDouble()-1.0;
r = body.wheelSystem.getMotionRequestForPivot(false,x, y,

0.2);
}else{
x=(2*random.nextDouble()-1.0)*0.25;
y=(2*random.nextDouble()-1.0)*0.4;
r = body.wheelSystem.getMotionRequest(false, x, y, 0.2);
}

}while(r==null);

sendMotionRequest(r);
return r.durationMillis;

}

public RsBody            body;
public Random            random;

}
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of a request is appropriate because it’s
possible that an obstacle may inter-
rupt your robot’s movement. If so, the
MotionHalted Event event is gener-
ated and your code’s registered Motion
HaltedEvent Handler is called. The
nextMove command in the drunk\
DrunkMain.java module calculates
the relative coordinates of its next
movement using the random method.
First, it determines if the robot should
pivot. If so, an RsMotionRequest
object is initiated using the getMotion
RequestForPivot command, which
is implemented in the RsWheelSystem
class. Other-wise the system calls the
getMotionRequestObject command.

The x and y coordinates passed to
the getMotionRequestForPivot
method represent the location that you
want the robot to face and will cause
the robot to pivot at the rate specified
in the last parameter as meters per sec-
ond. If, for example, the coordinates of
(0.0, 1.0) are specified, you are request-
ing that the robot face the location that
is 1 meter directly to the left. Figure 4
illustrates the coordinate system rela-
tive to the robot’s position and orienta-
tion. A robot is like a human being in
that it perceives the world from its own
frame of reference. Thus, for RP1,
movement is always specified using
relative rather than absolute (relative
to the floor plan) coordinates.

The coordinates for the getMotion
Request method are processed differ-
ently. They represent the desired off-
set from the current coordinates of the
robot. So, if a request was sent for the
robot to move to position (–1.0, 0.0),
you would be requesting that the
robot move 1 meter backward from its
current position. If, however, you
requested movement to position of
(1.0, 1.0), a path would be calculated
by the simulator to get the robot to a
position 1.4 meters from its current
position, 45° to the front and left. 

With your actual robot, you would
have to figure out the relative rotation-
al velocity of each wheel to produce
the right degree of curvature that leads
to the specified coordinates. In the vir-
tual world of Drunk, the RP1 simula-
tor does this work for you when you
call the getMotionRequest utility
method in the RsWheelSystem class.

If you use the getMotionRequest
UsingWheelSpeed method, however,
you can provide separate speeds for
the left and right wheels, along with
the amount of time both wheels
should continue rotating.

If the Drunk robot simulacrum
were equipped with any sensors, the
simulator would generate additional
events for each sensor. Additionally,
you would require separate event han-
dlers in your client. The Paint
SensorEvent handler, for example, in
the line tracker sample client uses its
handler to update public variables in
the main client class (LtMain) with
the state of the paint sensor described
in the RsPaintSensorEvent object.
Later, the HeartBeatEvent handler
uses this information to formulate the
next request for motion.

CLIENTS WRITTEN IN C
The RP1 distribution includes an

RP1 library written in C (RCAPI). It
supports the creation of RP1 Win32
clients written in C/C++ for both a
Windows desktop and Windows CE
device. Creating an RP1 client for a
CE device presents additional advan-
tages because the same navigation
algorithms can be tested on the actual
robot by attaching your CE device to

the robot platform. Carnegie Mellon
University used a similar design to
implement the Palm Pilot Robot Kit
(PPRK) (www.cs.cmu.edu/~pprk). I
adapted the PPRK platform to carry a
Compaq Aero 1530 Palm-sized PC.

The primary difference between the
Drunk RP1 client written in Java and
the one written in C (under the RCAPI\
{CE|Win32}\RCAPITester directories)
is the lack of an object-oriented con-
struct from which to create derived
classes that extend the functionality of
existing parent classes. When the Java
Drunk client was introduced, it was
clear that a good deal of functionality
was borrowed from the RsClient par-
ent class. Although this is clearly not
a requirement for developing an RP1
client, it simplifies creation of the code.

The existence of a C API for RP1
client creation is an important step,
however, in achieving portability to
low-end platforms in which the navi-
gation algorithms are being devel-
oped for the target platform in C and
need to be tested under simulation in
the same language.

The RCAPI library (located in the
RCAPI folder of the RP1 distribution)
contains Windows desktop-specific
code, located in the RCAPI\Win32
sub-directory, and the Windows CE-

Listing 4—The sample RP1 client Drunk uses this handler for the placement event. This event is generated
in response to the request sent by the call to the sendPlacementRequest method (see Listing 3).

public class DrunkPlacementEventHandler implements
RsPlacementEventHandler {

public DrunkPlacementEventHandler(DrunkMain _drunk){
this.drunk     = _drunk;

}

public void processTransaction(RsTransaction t){
process((RsPlacementEvent)t);

}

public void process(RsPlacementEvent event) {
drunk.log("Received placement at "+event.name);
drunk.body.setPlacement(true);
drunk.body.setMotion(

new RsMotionNull(
event.simTime,
event.orientation,
event.x,
event.y));

drunk.nextMove();
}

protected DrunkMain drunk;
}
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specific code, located in the RCAPI\CE
sub-directory. The Microsoft Visual
C++ and eMbedded Visual C++ make
files are provided in the RCAPI direc-
tory, named RCAPIWin32.* and
RCAPIWinCE.*, respectively. You also
get an example client implementing
the same robot simulacrum as the
Java Drunk client for both the desktop
and Windows CE in the RCAPI\{CE |
Win32}\RCAPITester directories.

I tested the Windows CE client
using the Win32 (WCE x86em) debug
target and the Palm-size PC 2.11
emulation platform options. You
shouldn’t have any problems with
other targets and platforms because
this code provides only a minimal test
harness user interface. When the build
has successfully completed, the emu-
lator for the selected platform auto-
matically loads. An application should
appear with various menu options
that were automatically generated by
the WCE MFC wizard tool. Consider
that this effectively represents two
levels of simulation, in that the CE
platform emulation is a representation

of the robot’s virtual target hardware,
which in turn uses RP1 to simulate
the robot’s virtual world. 

The one menu option of interest is
the test menu option. When selected,
the runRCAPITest function performs
the same operations as the run method
in the DrunkMain class. A connection
is established with the server, the
client properties file is loaded, the
ClientZero body is sent to the server,

and the RsClientMainLoop func-
tion is called to allow processing of
incoming events.

The allocateClientZero func-
tion in the ClientZero.c module
constructs the robot body and is
called from TestMain.cpp (see
Listing 5). Each piece of the robot
body is created by calling utility func-
tions with the prefix “build”. These
utility functions extend their simpli-
fied parameters with additional infor-
mation needed for calling the func-
tions with the prefix “RsBodyCreate”
in the RsBody.c module. The
sendClientZero function is called
after allocateClientZero and is
responsible for calling the functions
with the prefix “RsSend” (in the
RsBodySend.c module) for each of
the body parts allocated in
allocateClientZero and saved in a
static pointer variable. The functions
called next in TestMain.cpp should
appear familiar because they have
analogs in the Java RP1 client API.

When developing your own RP1
clients in C, most of your modifica-
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Figure 4—Robots move similarly to people. RP1 coor-
dinates are in the relative frame of reference of the
robot, not the absolute coordinates of the floor plan.
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tions will be focused on the
ClientZero.c and TestMain.cpp
modules. The latter contains the
event handlers that will need to be
augmented as you add more sensors
and enhance the navigation algo-
rithms of your robot simulacrum. The
former contains a series of utility
functions that would create a robot
body identical to the one used in the
Drunk client. You could modify the
functions for any changes to the capa-
bilities or appearance of your robot. 

One other thing to be aware of with
RP1 C clients is that your client is
launched separately from the RP1
server, which runs in a JVM. This
means that the .INI file (properties
file) entries reserved for the dynamic
loading of Java clients (with prefix
“dlc”) need not be assigned a value.
See the RP1 user documentation for a
complete description of all of the
available properties file entries.

FUTURE OF ROSSUM 
The Rossum project is an open-

source project, which means that its
success is largely determined by the
contributions and hard work of both
users and developers. The Rossum
project has given us a framework
from which to build many other capa-
bilities, and there is no shortage of
ideas on what to do next. Let me
briefly list the most ambitious ideas
under consideration now.

One plan is to enhance the RP1
base GUI to control more simulation
options in real time, particularly
those specified in the RP1 properties
files. Another idea is to create a
WYSIWYG floor plan authoring tool
to allow the RP1 floor plan to be
defined interactively, and then saved
in the RP1 floor plan file syntax.
People also are working on additional
object types for the RP1 floor plan,
such as walls with reflectivity, light
absorption, scattering properties, and
furniture that can be specified as
moveable. Additional wheel systems
beyond the two-wheel, differential
system are in the works, as well.

Rossum’s Playhouse (RP1) is the
first software released by the Rossum
project and represents a major step in
providing an open source alternative

to expensive commercial robot simu-
lators. RP1 provides a basic set of
options for configuring a two-wheel,
differentially driven robot simulacrum
equipped with an array of tactile and
optical sensors. The robot’s virtual
world is defined using a floor plan file
that is displayed graphically in a 2-D
rendering. RP1 clients are written in
Java or C/C++ and may be used to test
navigation algorithms prior to being
run on a physical robot. Visit the
Rossum project web site to learn more
about all the features of RP1 and to
download the latest RP1 release. I

SOURCES
Aero 1530 Palm-sized PC
Compaq Computer Corp.
(800) 282-6672
(281) 370-0670
Fax: (281) 514-1740
www.compaq.com

The Rossum project
G. W. Lucas
rossum.sourceforge.net

James Wilson is a software engineer
for Loronix Information Systems in
San Diego, California. He coauthored
Building Powerful Platforms with
Windows CE. In his spare time, he
also acts as a Microsoft eMVP for
Windows CE. You may reach him at
jywilson@ieee.org. 

Listing 5—When using the RCAPI, the robot body is constructed through a series of function calls that are
preceeded with the prefix “build”.

void allocateClientZero(char *strNewBodyName) 
{

/* Radius of the circle of the robot body (0.30 metersacross). */
double circleRadius = 0.15; 

/* Build the container structure which describes the overall 
robot body. */

rsBodyContainer = buildBodyContainer(strNewBodyName, 10);

/* Progressively build the robot body and retain the pointers 
to each structure encapsulating the details of each body 
component.These pointers will be used later in the transmis
sion of the whole body definition to the RP1 server. */

rsCircle = buildPrimaryBody(circleRadius);
rsWheelSystem = buildWheelSystem();

/* Build each of the three contact sensors located along the 
circular perimeter of the robot�s body, 120 degress apart. */

rsContactSensor1 = buildContactSensor("Contact Sensor 1", 
circleRadius, 0, 120);

rsContactSensor2 = buildContactSensor("Contact Sensor 2", 
circleRadius, 120, 240);

rsContactSensor3 = buildContactSensor("Contact Sensor 3", 
circleRadius, 240, 360);

/* Build each of the four range sensors. One sensor is located
every 90 degrees around the perimeter of the robot. */

rsRangeSensor1 = buildRangeSensor("Range Sensor 1", 
circleRadius, RADIANS(45));

rsRangeSensor2 = buildRangeSensor("Range Sensor 2", 
circleRadius, RADIANS(135));   

rsRangeSensor3 = buildRangeSensor("Range Sensor 3", 
circleRadius, RADIANS(225));   

rsRangeSensor4 = buildRangeSensor("Range Sensor 4", 
circleRadius, RADIANS(315));   

/* Build the omnidirectional target sensor, designed to detect
a point object. */

rsTargetSensor = buildTargetSensor("Target Sensor");
}

Author’s note: Many thanks to G. W.
Lucas for making this article possi-
ble, both as the creator of the
Rossum project and for his dedicated
review of its content.

http://www.compaq.com
rossum.sourceforge.net
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n the summer
of 2001, James gave

his small engineering
class at North Carolina

State University an assignment to
design and implement a functional
robot for a robot race. This race had
specific design rules and restrictions.
The rules for the race and the require-
ments for the robot were that the
robot must use nitinol (Flexinol) for
locomotion, use legs in its propulsion
(more than two legs required), and
walk four times its length in the
fastest amount of time on smooth
Formica. Other demands were that it
have an on-board microprocessor, stop
walking via sensor input, and measure
no greater than 12″ × 12″. We wanted
to perform multiple trials and take the
best time for competition comparison.
The ability to add either an external
(tethered) or attached power supply
rounded out the list of requirements.

The summer course, titled “Simple
Robots and Microprocessors,” concen-
trated on the Stiquito robot (see Photo 1)
and the BASIC Stamp II microcontroller.
Naturally, most students used Stiquito
as the basis of their designs. Stiquito
is an inexpensive hexapod robot that
uses nitinol for movement. [1] Nitinol
is an alloy actuator wire made of nick-

el and titanium. This wire retains or
remembers its original shape after
bending. Jonathan Mills of Indiana
University invented Stiquito, which
means “little sticky.” 

The engine of Stiquito consists of
nitinol and music wire. Nitinol con-
tracts when current runs through it,
and then returns to its original posi-
tion when the current is removed and
the music wire pulls the nitinol back.
This action causes a forward and back
pulling movement, hence the primary
movements of Stiquito.

A Stiquito with two degrees of free-
dom uses a regular Stiquito design,
with an addition of six more nitinol
actuator wires that lift the legs off the
ground. Two-degree movement means
movement on both a horizontal and
vertical planes (i.e., both back and
forth and up and down). Using the two
tripods of legs, tripod A is lifted off the
ground while the leg is in the forward
position. Then tripod B is moved back-
ward while on the ground. Next, tri-
pod B is moved up into the air and for-
ward, and tripod A is moved down
onto the ground and backward. 

The previous steps are repeated
beginning with tripod A. Moving for-
ward means the leg relaxes and returns
to the standard position. Moving back-
ward means the nitinol tightens. Two-
degree robots have a lot less friction
than robots with one degree of free-
dom (movements on the horizontal
plane only), and thus move faster.

The students decided that a micro-
processor-controlled Stiquito with two
degrees of freedom (using screws) was
the most time-efficient and effective
racebot. Designing the Stiquito with
two degrees of freedom or any robot
requires three parts.

The first and major part of this proj-
ect is the mechanics, which consists
of the whole frame of the robot. This

Racebot

i
Some of the best
designs are inspired
by old favorites.
Building on the clas-
sic Stiquito model,
Scott and James
modified the robot to
walk with steps rather
than push itself along.
Read on to learn how
they used the BASIC
Stamp II to control the
nitinol muscles.  

Scott Vu &
James Conrad

FEATURE
ARTICLE

A Two-Degree-of-Freedom Stiquito Robot

Photo 1—Stiquito is an inexpensive hexapod robot that
uses nitinol for propulsion.
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out the output pin, and vice versa.
The ULN2803A chip has a total of 18
pins. Pins 9 and 10 are used for ground
and power, respectively. Pins 1
through 8 are used for inputs, and
pins 9 through 18 are used for out-
puts. Each input pin corresponds to
the output pin directly across from
each input pin. Refer to Figure 1 for
the pin numbers. The chip requires at
least 5 V to run. 

The rules of the race required that
each robot have a mounted sensor to
stop the robot from walking. The sen-
sor used for the two-degrees-of-free-
dom Stiquito robot was a bump/
switch sensor. The sensor was con-
nected in parallel to a starting switch.
The robot starts when the start push
button is pressed, and it stops when
the sensor switch is pressed.

Four sockets were soldered onto
the printed circuit board. The purpose
of the sockets was to easily remove
the BASIC Stamp II and ULN2803A

chip for testing and debug-
ging. One of the sockets had
the same dimensions and
pins of the BASIC Stamp II,
and the other socket had the
same dimensions and pins of
the ULN2803A chip. The
other two sockets (two pins)
were power sockets to attach
the battery to the board. The
power was provided by two
9-V batteries. One of the bat-
teries drove the BASIC
Stamp II and ULN2803A
chip, and the other battery
drove the legs. The batteries
were attached to the PCB by

includes how the robot will look and
function. The mechanics are impor-
tant, because they’re the basis for the
other two design parts. If the mechan-
ics do not work, the robot does not
work. The second part is the electrical
hardware, which consists of the
microprocessors, chips, and circuitry
needed to control the robot. 

The third and last part of the design
is the software. The software is not
required if the robot is built with analog
circuitry. However, software is needed
for robots that use a microprocessor.
The software obviously drives the
microprocessor, which in turn drives
the robot. Making the software effi-
cient makes the robot efficient. 

MECHANICAL DESIGN
The frame for the two-degrees-of-

freedom Stiquito racebot was built
with the original one-degree-of-free-
dom Stiquito frame. The original robot
had six legs and used a tripod gait, but
also used two degrees of freedom. A
tripod gait is the movement of three
legs at the same time, the front and
back legs on one side and the
middle leg on the other side.
Read Stiquito for Beginners:
An Introduction to Robotics
for the original one-degree-of-
freedom Stiquito design. [1]

For a Stiquito with two
degrees of freedom, an extra
60-mm nitinol wire was
attached to each leg. The
extra wire was screwed to the
upper surface of the Stiquito
body for vertical movement.
Two extra 28-AWG wires were
attached to the bottom of the
body to control the vertical
tripod gait movements. A

small piece of rubber was attached to
the end of each foot to allow it to grip
onto the surface. Two holes were
drilled at each end of the body to
attach the printed circuit board on top
of the Stiquito.

ELECTRICAL DESIGN
The printed circuit board is a regu-

lar epoxy board (perfboard) that has
several 1-mm holes used to construct
circuitry from scratch. A microcon-
troller, ULN2803A chip, bump/switch
sensor, as well as sockets were on the
PCB. All of these were wire wrapped
and soldered together. 

The BASIC Stamp II microcontroller,
sold by Parallax, controlled the legs of
Stiquito. The dimensions of the
BASIC Stamp II are 1.1875″ × 0.625″ ×
0.375″, and it weighs only 0.02 lb (see
Photo 2). The BASIC Stamp II con-
tains a PIC16C57 (interpreter chip)
microcontroller, runs at 20 MHz, uses
2 KB of EEPROM, and includes 32 bytes
of RAM. [2] The microcontroller inter-
prets BASIC language programs for
instructions. The BASIC Stamp II has
16 input/output pins and a total of
24 pins. It needs 7 mA of current to
run, and 50 µA of current to sleep. It can
also provide source current of 20 mA
and sink 25 mA of current.

The ULN2803A, an eight-transistor
Darlington array chip, was used as a
source of current from a battery to
each tripod because the current from
the BASIC Stamp is not enough. [3]
The primary function of the chip is to
act as an inverter. If a digital one goes
into the input pin, a digital zero goes

Photo 2—The BASIC Stamp II microcontroller con-
tains a complete microprocessor system, including
RAM, EEPROM, an operating system, serial port, and
16 input/output ports. Photo 3—The completed Stiquito with two degrees of

freedom and the microcontroller attached was able to
walk 30 cm in 1 min. compared to about 10 cm per
minute for a Stiquito with one degree of freedom. (The
power tether is not shown in this photo.)
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Figure 1—There are only two components of the Stiquito controller circuit, the
BASIC Stamp II and a ULN2903A Darlington transistor array.
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states can be represented visual-
ly as demonstrated in Figure 4.
Follow the state diagram for pro-
gramming. You may download
the source code from the Circuit
Cellar web site. 

The software loops in the
beginning of the code waiting for
the Start button (pin 7) to be

pressed. After the pin registers a digi-
tal one, the leg algorithm starts exe-
cuting. In order to detect the bump
sensor more frequently, the software
polls pin 7 every pulse. After a digital
one has been detected by way of the
bump sensor, the program stops the
leg algorithm and loops for a digital
one in pin 7 to start the legs again.

IMPLEMENTATION
Building the electronics took many

of steps. You may download the parts
list from the Circuit Cellar web site.
To start, first solder pins 8 through 15
of the BASIC Stamp II socket to pins 8
through 1 of the ULN2803A socket,
respectively. Solder every two pins
together on the ULN2803A socket
starting with pin 1. This connects two
transistors for more current to the
legs. The result from the ULN2803A
is four outputs for the two tripods
with two-degree movements. 

Both pin 10 of the ULN2803A sock-
et and pin VIN of the BASIC Stamp II
socket are soldered to the power of the
battery number one socket. Pin 9 of
the ULN2803A socket, the VSS pin of
the BASIC Stamp II socket, the ground
of battery number two socket, and
pull-down resistor are soldered to the
ground of battery number one socket.

Solder the 34-AWG wire and one
pin of the DIP switch (two pins) to the
VDD of the BASIC Stamp II socket.
Next, connect the 20-AWG, the other
pin of the DIP switch, and the power

way of four 34-AWG magnet wires. A
schematic of the electrical design is
shown in Figure 1.

SOFTWARE DESIGN
Scott wrote the program in the

Parallax BASIC programming lan-
guage. We used the software to control
the movements of the legs, control
frequency of current transmission to
the legs, and detect sensor inputs. 

Nitinol requires a lot of current;
running nitinol robots can drain a 9-V
battery in 15 min. It also needs cool
ambient air to return to its normal
position quickly. To compensate for
these, the software uses pulse width
modulation. By using pulse width
modulation, the software lets just
enough current to go through per time
unit to contract the nitinol. 

Sending a pulse to the nitinol for a
number of milliseconds, pausing for
the same amount of time, and then
repeating the pulse again perform
pulse width modulation. In order to
jump-start the nitinol, a pulse of 20 ms
on and 20 ms off is required. This is
done five times. To sustain the niti-
nol in the current position, a pulse of
20 ms on and 80 ms off is required.
This is done eight times. In order to
move a tripod, a jump-start pulse and
a sustaining pulse is executed. See
Figures 2 and 3 for details about how
we implemented PWM for this robot.

Many embedded systems can be
characterized by using a state machine
to transition between states. We used
a state diagram to show the transition
between these states and identified
the control of the legs in each state.
Because there are four movements per
tripod, there are four states per tripod.
Table 1 describes the states.

A one means the nitinol is activat-
ed. The state machine requires one
initial state (all nitinol relaxed) and
eight operational states. The different

Current pulses

Out statements that generate current pulses 

Figure 2—To save battery power and protect the nitinol wire,
we pulse-frequency modulate the current going to the nitinol
wire. Note the variable delay.

Percent of length that the actuator contracts

Apparent current

Figure 3—The nitinol actuator responds to the heat
generated by the current pulses and the loss of heat
caused by convection of the wire.
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http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeece3c


making the nitinol
contract well
(pulling 7 to 8 mm
of music wire
backwards) is
sanding the nitinol
well. When sanded
well, the nitinol
will appear white
and make a better
connection.

Our second tip is to test your code
on a breadboard before you put it on
your Stiquito robot. The breadboard
should consist of the BASIC Stamp II,
ULN2803A chip, and LEDs acting as
legs. Neglecting to perform this test
may damage the Stiquito’s nitinol. In
addition, do not tighten the vertical
nitinol actuators too tight. The hori-
zontal nitinol actuators break easily
if this is done. 
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and tweaking the Stiquito took yet
another 6 h. We completed the software
in 15 min. The total estimated time is
18 h. Photo 3 shows the completed
robot. For more information regarding
the building process from two students’
perspective, read the “Experiences with
a Simple Robot” sidebar.

While building this robot we learned
several tips that you should remember
when building your own. The key to

of the pull-down
resistor to pin 7
of the BASIC
Stamp II. The
pull-down resis-
tor pulls down
the voltage of
pin 7 to its
default voltage,
because the pin’s
voltage tends to
vary in an unknown voltage.

After you complete all of the sol-
dering, you’ll use pin 7 of the BASIC
Stamp II as a detection pin. Every two
pins starting with pin 8 through 15 will
control one movement and one tripod.

It took us roughly 6 h to build the
two-degrees-of-freedom Stiquito
mechanics (specific steps can be found
in Stiquito for Beginners). [1] The board
took another 6 h to produce. Testing

EXPERIENCES WITH A SIMPLE ROBOT
By Sarah Goodman and Priti Patel

At the end of the semester, professor James Conrad
announced he would be holding a summer class on sim-
ple robotics. He made robotics sound so fun that we
signed up for it. We first started by examining the
Stiquito. Although it walks at a blazing 3 to 10 cm per
minute, it is an amazing learning tool and a terrific way
to introduce anybody to the field of robotics. A Stiquito
robot is relatively easy to build, which makes it a great
in a lab course or project.

During the early weeks of the class, we each con-
structed one of these small robots and made it walk.
This gave all of us the experience of working with small
parts and some basic knowledge of how to go about pro-
gramming a robot to walk. Our final goal was to build a
robot using nitinol as propulsion and an on-board micro-
controller to compete in a race at the end of the summer
(and maybe even win). 

The robot for the race was not required to be a
Stiquito, so some people opted to construct their own,
larger versions of this cute little bug. However, the
majority, including us, decided to keep the original
Stiquito base design and modify it a bit. By adding a sec-
ond degree of motion (upwards), the Stiquito no longer
has to drag its other feet but can instead lift them into
the air while moving forward to greatly reduce friction.
Besides the addition of a second degree of motion and the
use of screws in place of crimps, the body of the Stiquito
remained essentially the same.

Because our Stiquito had a tripod gait and two degrees
of freedom, it was necessary to design a state diagram to
create a stable and efficient walking pattern. The chosen

microcontroller brain of our Stiquito was the BASIC
Stamp II. Using the Parallax “Board of Education” dur-
ing labs, we became fairly proficient at programming
this chip to light up several LEDs and make them blink
in attractive patterns. 

After you program it, you could pop off the BASIC
Stamp II from the board and it would remain pro-
grammed to do whatever you wanted. In our case, the
Stamp would control the gait of a Stiquito and detect
the output of a bump sensor. After programming the
BASIC Stamp II with similar code, we removed it from
the Parallax “Board of Education” and placed it in our
circuit board attached to the Stiquito. This was repeated
many times as we began to make the final adjustments
to give our Stiquito optimal performance for the race.

On that great day of glory at the race, our valiant
Stiquito managed to stand at the starting line and pull
off a convincing impersonation of a paperweight. When
the batteries were connected, it failed to move at all.
After examining our robot, we discovered that one of
the wires in the circuit was soldered poorly. For this rea-
son the Stiquito was receiving little to no power. The
free pizza provided was our only consolation. The next
day, after many repairs, our Stiquito managed to hobble
in a circle on a lab table.

One of the most enjoyable classes of our college
careers is now over. We still have that first Stiquito we
built now sitting in a box as a memento. Two of the legs
are not functioning, but he is still a nice reminder of all
the fun (and pain) we had as we were introduced into
the world of robotics.

Direction Description

Down and forward DF 00 Relaxed state for all legs
Down and back DB 01 Legs are on the ground and pushing the robot forward
Up and back UB 11 Lift the legs off the ground so that they do not pull the robot back when 

they go forward 
Up and forward UF 10 With the legs out of the way, return them forward to prepare to place them 

on the ground

Table 1—Each tripod can have four different states. The three legs of each tripod can be up or down and forward
or back. Each leg has two pieces of nitinol to control this up/down and forward/back position. A zero means no
current flows through the nitinol; a one means that current flows through and the wire contracts.
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Next, check your board with a volt-
meter. Be careful not to short your cir-
cuit connections on the board. Do not
invert power and ground inputs. We
advise you to test nitinol actuators
with 3 V. Nine volts will burn a single
nitinol actuator. 

Another tip we learned is that the
28-AWG wire and 34-AWG magnet
wires will snap easily, so be careful
when twisting or turning them at a
joint. Lastly, note that nitinol can get
hot when current is running through
it, so take care not to burn yourself.

RESULTS AND FUTURE PLANS
The Stiquito won second place in

the race; it was able to walk 30 cm in
61 s. The first place robot won with an
elapsed time of 41 s (and is the subject
of an article we’re working on). The
third place robot took 61.6 s to com-
plete the 30 cm. The reason for the
second place finish was because of the
way we implemented the state diagram
in software. The nitinol contracted
too long for the sustaining pulse. The
pulse should have been done only five
times rather than eight times. Also,
we didn’t allot enough time for the
nitinol to cool in certain states. To
make matters worse, the temperature
in the racing room was high and the
nitinol could not relax fast enough. If
only someone would develop a solu-
tion for cooling nitinol faster.

Our future plans are to improve the
software for the robot, especially a
better implementation of the state
diagram. We also noticed a direct cor-

relation between the ambient temper-
ature and nitinol relaxation time, so
adding a simple thermal sensor to dis-
tinguish between 20°C and 30°C
could further optimize the gait. I

Figure 4—Embedded applications are often designed
using a state diagram. Each state represents the pos-
sible positions of the four groups of nitinol actuators.
The top letters are one tripod and the middle letters
are the other tripod. The four binary digits represent
which of the four groups of nitinol wires are activated.

SOURCE
BASIC Stamp II
Parallax, Inc. 
(888) 512-1024
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

REFERENCES
[1] J. M. Conrad and J. W. Mills, 
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Introduction to Robotics, IEEE 
Computer Society Press, Los 
Alamitos, CA, 1997.

[2] Parallax, Inc., BASIC Stamp 
Manual, rev. 1.9, Rocklin, CA, 
1998.

[3] SGS-Thomson Microelectronics, 
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RESOURCE
Official web site for Stiquito
www.stiquito.com

SOFTWARE
To download the code, go to ftp.
circuitcellar.com/pub/Circuit_
Cellar/2002/141/.

Scott Vu is an Electrical and Computer
Engineering student at North Carolina
State University. You may reach him
at skvu@eos.ncsu.edu.
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ome of the
greatest songs in

musical history are
performed as duets.

Being a Tennessee boy, my musical
mind recalls melodies from perform-
ers like George Jones and Tammy
Wynette and the contemporary coun-
try sounds of Tim McGraw and Faith
Hill. Of course, rock and roll had (and
still has) its share of duet performers
as well. Jan and Dean, the Everly
Brothers, and Elton John with Kiki
Dee come to mind. 

Because there’s math involved, I
find that things that work well for
music usually work well for electron-
ic things. Although the previous state-
ment is not one of the sacred laws of
embedded computing, it should be.
With that thought, let’s put a pair of
T100MD’s together and make some
control music with a PLC duet.

THE T100MD-1616+
In Part 1 of this series, I talked

about the T100MD-888+, a program-
mable, Internet-capable PLC with
eight physical inputs and outputs. As
you might have grasped from its
moniker, the T100MD-1616+ has 16
physical I/O ports. The basic opera-
tions I described last time also can be

applied to the more robust T100MD-
1616+ PLC you see in Photo 1. 

The major differences between the
T100MD-888+ and T100MD-1616+ can
be found in the analog area. Unlike the
T100MD-888+, the T100MD-1616+
demands a separate power supply for
the analog components. Instead of the
maximum of eight 10-bit A/D chan-
nels, the number of ’1616+ A/D chan-
nels has been reduced to four. The first
two 1-V full-scale analog channels are
buffered with LM324 op-amps set for a
gain of five. The remaining two chan-
nels are not buffered and accept 0- to
5-V inputs. All of the analog inputs
are protected with a Zener diode just
in case you pull a “Fred.”

The two T100MD-888+ DACs are
unbuffered outputs that you must
condition. The first analog output on
the T100MD-1616+ is configured at
the factory to provide a 20-mA current
loop signal. Current loop output allows
a longer distance between nodes, as
wire resistance does not inhibit its sig-
nal. The current loop output is convert-
ed to a voltage using a resistor across
the output terminals. Ohm’s Law pre-
vails here and to achieve a 0- to 5-V
output, a 250-Ω resistor would be used.
The current loop DAC on the T100MD-
1616+ is calibrated using an onboard
potentiometer and a single line of
TBASIC code, SETDAC 1,2048.

The second analog output of the
T100MD-1616+ is an unbuffered,
unprotected, high-impedance output
that is directly connected to the
T100MD-1616+ CPU. This analog
output is included to allow you to
build a custom D/A interface for
applications that requires more than
one DAC or cannot be adapted to
20-mA current loop operation.

My T100MD-1616+ came with the
4 × 20 backlit LCD and a battery-
backed 62256 SRAM module. The
advantages of the LCD are obvious.
Having the battery-backed SRAM
enables the T100MD-1616+ I/Os,
timers, internal variables, and coun-
ters to retain their values at PLC
power down. Only PWM data isn’t
retained in the battery-backed SRAM.
Another feature of the battery-backed
SRAM is the inclusion of a PLC real-
time clock that’s nonvolatile.

s
Last month Fred intro-
duced us to the
T100MD-888+ and
discussed some of
the basic functions
and potential of the
PLC. This time
around, he steps up
to the 16 I/O port
model and delves into
a communications
application that talks
over an RS-485 LAN.

Fred Eady

Part 2: The T100MD-1616+

Replacing Relays with
Ladder Logic 

APPLIED
PCs
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the syntax you would expect in a
BASIC language, TBASIC contains spe-
cialized commands to operate against
the PWM, ADC, and DAC modules.

The easiest way to perform the ID
assignment task is to use one of the
PC’s standard serial ports and the PLC’s
COMM1 port and manually issue the
host link command to change the ID. I
must admit I spent an hour or so trying
to do this the first time. The host link
command to read an ID is IR* plus the
Enter key or Send Command button.
The correct response from the PLC
would be IR01*, with the 01 being the
currently assigned ID. Well, the IR*
command worked perfectly. 

The ID assignment command is
IWXX*, where XX is the ID number
you wish to impose on the PLC. I
couldn’t get that simple command to
work to save my life. After consulting
the T100MD-1616+ documentation, I
discovered that by placing “@01”
before the command, I could direct
the command directly to ID 01. That
worked for the IR* command but I
still couldn’t change the PLC ID to 00
with IW00* or @01IW00*. More read-
ing put me on the trail of adding “00”
between the command and the delim-
iting “*”. In went @01IW0000* and
bingo! It seems the final 00 tells the
command interpreter to ignore the
frame check sequence (FCS) and do
the operation no matter what. I moved
on and set the T100MD-888+ ID to 00
and the T100MD-1616+ ID to 01. The
PLC ID assignment windows for both
PLCs are shown in Photo 2.

The PLC RS-485 LAN will reside on
the Internet at 216.53.172.209:9080.
The PC server at this IP address has no

FORMING THE DUET
The T100MD-888+ and T100MD-

1616+ super PLCs both contain RS-232
and RS-485 communications capability.
Each PLC depends on a host PC to get
their control signals out onto a LAN,
WAN, or the Internet. PLC COMM1 is
configured as a DCE RS-232 interface.
This allows PLC COMM1 to attach
directly to the DTE RS-232 interface
of the host PC without special crossover
cables or null modems. The ’1616+
RS-232 interface is simple and uses only
three lines, including receive, transmit,
and ground. PLC COMM1 also can be
attached to a standard modem by
crossing the transmit and receive lines.

You can use PLC COMM1 for other
RS-232 communications tasks when
PLC COMM3 is pressed into service.
PLC COMM3 is a half-duplex RS-485
interface. Like PLC COMM1, the PLC
COMM3 can be used to send and
receive programs and commands to
either the host PC or another PLC on
the RS-485 network. For instance, PLC
COMM1 could service a modem while
PLC COMM3 is connected to a num-
ber of other local PLCs on a RS-485
multi-drop LAN. I didn’t use a modem
for my Florida-room PLC performance,
instead I chose to explore the RS-485
and RS-232 connectivity of the
T100MD-888+ and T100MD-1616+
with a persistent Internet connection.

RS-485 will be used to connect the
T100MD-888+ and T100MD-1616+ no
matter how I configure the PLC LAN,
therefore the first order of PLC busi-
ness entails assigning a unique RS-485
ID to each PLC on the RS-485 multi-

drop network. Both of my PLCs came
out of the box with their IDs set to
01. Using the factory-provided RS-485
driver IC, the RS-485 LAN can consist
of a maximum of 32 TM100MD+ nodes
(0x00–0x1F) including the PC node if
it is used. Other more efficient pin-
compatible RS-485 drivers can be used
to raise the LAN node count to 256. I
won’t experiment with the RS-485 driv-
er IC upgrade, because I will have only
a three-node network at the maximum.

Issuing a host link command from
the serial port setup area of the
TLServer window reads or sets the
RS-485 device ID of the PLC. Host
link commands allow the PLC pro-
grammer to read and write the internal
variables of the PLC. The PLC variables
I’m referring to include the physical
inputs and outputs, logical relays,
timers, counters, memory locations,
PWM, ADC, and DAC channels, time
of day registers, timer preset values,
integer storage, and string storage. 

Most of the variables are 16 bits wide.
For instance, Output[1] is a 16-bit
variable representing physical outputs
1 through 16. Output[2] represents
physical outputs 17 through 32, and so
forth. The maximum number of inputs
is 256 with the same number for out-
puts. There can be 512 internal relays
arranged in blocks of 16 just like the
inputs and outputs (Relay[1], Relay[2],
etc.) and 64 each of timers and coun-
ters again arranged in blocks of 16. 

There are also 26 32-bit integers (A
through Z) defined in each PLC and the
26 predefined string areas (A$ through
Z$) can hold up to 70 characters each

including the trailing null
character. Counters and
timers come in at 128 each.
Add all of that to 4000 16-
bit user memory locations.
TBASIC can use the results
of host link commands exe-
cuted against these vari-
ables, making the TBASIC/
host link command duet a
powerful PLC program-
ming tool. In fact, the
TBASIC instruction set
includes a TBASIC com-
mand, called NETCMD$, to
handle issuing host link
commands. In addition to

Photo 1—What you see here is a fully loaded
T100MD-1616+. The analog area (unlabeled blue
screw terminals) is directly left of the red-tagged CPU
module. The SRAM battery/clock module is sand-
wiched between the SRAM module and IC socket.

Photo 2—In both cases, the starting ID for each PLC is 01. The host
link command, IWXX, is executed with trailing zeros to force the oper-
ation. The COMM1 port is automatically opened when the Send
Command button is clicked.
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haps prevent any accidental swapping
of the RS-485 and power cables. As
my reputation sometimes precedes
me, I asked Leon if he did that only
on the PLCs I have in my possession.
Thankfully, the answer was, “No.”

Moving on, I used standard Cat 5
cable to assemble my half-duplex,
three-wire RS-485 cable. The PLC
power cable was constructed with
0.156 header pins and 24 AWG hookup
wire. I also used the 0.156 header pins
on the RS-485 cable because that
makes it easy to insert and extract the
cables without damaging the ends of
the cables. I added a 120-Ω terminat-
ing resistor across the T100MD-1616+
RS-485 connector. Photo 3 shows the
complete PLC RS-485 LAN. 

After knocking a hole in my
router to allow the Internet
TRiLOGI server’s 9080 TCP/IP
port to be seen on the big wire, I
swung over to another PC tied to
the persistent Internet connection
I call Road Runner and opened a
TRiLOGI window. Using the
default administrator login, I
connected to the TLServer at
216.53.172.209:9080 as expected.
If I did everything right in the
PLC setup, clicking on the Detect
ID button should have hooked me
up to the T100MD-888+ PLC
whose ID is 00. So I went ahead
with the click, and….
00 appeared in the box beside the

Detect ID button when I was in the
T100MD-888+ via an Internet connec-
tion. I wrote a simple ladder program

in Part 1 that sequenced through
the PLC outputs 1 through 4
blinking the LEDs as it went. I
decided that was as good a test as
any and proceeded to upload the
program to the now Internet-con-
nected T100MD-888+. Less than
a minute later, I was flashing
LEDs on ID 00. You can see the
sequence of events to get to this
point in Photo 4.

The next logical step is to con-
tact the T100MD-1616+, which is
identified as 01 on the RS-485
LAN. I entered “01” in the win-
dow next to the Detect ID button
in the “Select PLC with ID#”
window. Click….

internal RS-485 adapter card. So, I’ll use
one of the server PC’s serial ports to
connect the PC server to PLC COMM1
of the PLC, which is connected through
PLC COMM3 to the RS-485 LAN. The
next order of business is to assemble
the RS-485 and PLC power cables. 

In the first part of this duet of PLC
articles, I wondered why the RS-485
connector was soldered in instead of
removable like the rest of the inter-
faces on the T100MD-888+ and
T100MD-1616+ PLCs. According to
Leon at Triangle Research, the answer
is simple. In the heat of PLC battle, it
is too easy to confuse the power ter-
minal with the RS-485 terminal when
both use the removable terminal hous-
ings. So, to keep from messing up the
RS-485 driver IC when the terminals
got swapped, the engineers at Triangle
Research decided to not allow the user
to remove the RS-485 terminal block.
This little inconvenience would per-

But there was no response. Click
again…. Still there was no response.
After some thought, it occurred to me
that the TLServer could not directly
reach the T100MD-1616+ PLC at ID 01
because the TLServer was not directly
participating in the RS-485 LAN. A
few minutes later, the light got even
brighter. My simple blinker ladder
program does not incorporate any pro-
gramming to force communications
over the RS-485 link between the
T100MD-888+ and T100MD-1616+. So,
anything destined for the PLCs that
are downstream of the PLC directly
attached to the PC must go through
the directly attached PLC initially.
Also, in this case, a master/slave rela-

tionship must exist on the RS-485
LAN, because there is no master RS-
485 adapter in the PC. 

Here’s where NETCMD$ goes to work.
The NETCMD$ command in TBASIC
directs a host link command out of a
selected PLC COMM port. In addition,
the NETCMD$ instruction automatically
calculates the FCS and appends any nec-
essary command termination charac-
ters. So, by using TBASIC and NETCMD$,
you can access all of the parameters of
all of the PLCs attached to an RS-485
multi-drop LAN. Although that’s a good
thing and I can manipulate other PLC
resources programmatically, the down-
side to the configuration I have now is
that I can only use TRiLOGI to down-
load ladder programs to the directly
attached PLC. I would then have to
write a ladder program to access the
resources of any other PLCs on the

Photo 3—This arrangement has lots of possibilities. By
networking the two PLCs, I now have twice as many sys-
tem resources to work with. I can either set up a mas-
ter/slave relationship with the PLCs and share the slave
resources or make each PLC an independent entity.

Photo 4—The sequence of events that leads to getting a ladder
program across the big pond to the PLC begins with connecting
to the remote server and selecting the target PLC by its ID. The
ladder program is then compiled and sent down the line. 

Photo 5—In the upper window, you can see the 26 integer sys-
tem variables (A through Z), high-speed counters (HSC1-3),
analog and PWM channels, and what is displayed on the LCD
if it is attached. While debugging, you can actually edit the vari-
ables from this window. The bottom window is animated and
allows you to control the PLC it is logically connected to.
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LAN. Even worse, if I wanted to run dif-
ferent programs on each PLC, I would
not be able to load or reload the pro-
grams remotely without fancy coding.

It was time to change my tune. I
pulled out another Windows-based PC
I keep in reserve and stripped it down
to the minimal configuration. I added
an Ethernet adapter card and an RS-485
adapter card from B&B Electronics.
The motherboard of my PC provided
the necessary serial ports as well as a
video interface. I decided to use the
PC’s standard COM1 port as the PLC
serial interface, and configured the RS-
485 adapter card to provide RS-485
services on COM3 using IRQ5. Next, I
loaded a full complement of Internet
TRiLOGI V.5.1 on the new PLC server
PC. I also reset the PLC IDs to 01 for
the T100MD-888+ and 02 for the
T100MD-1616+ using the COM1-to-
PLC COMM1 RS-232 serial connection.

The RS-485 adapter card interfaces
to the RS-485 PLC LAN via a standard
RJ-45 connector. The PLC RS-485
setup is configured as a half-duplex,
two-wire LAN. The RS-485 adapter

card assumes a four-wire, full-
duplex RS-485 LAN. Those
aren’t problems; I used another
piece of Cat 5 twisted-pair cable
and tied the A and B TX/RX pairs
together (TXA to RXA, TXB to
RXB) to form a two-wire inter-
face at the other end of the
adapter interface cable.

Earlier, I called the half-duplex
implementation a three-wire
interface. The third wire in the
half-duplex, two-wire interface is
the common ground connection
between the PLCs and the RS-485
adapter card, which comes from
pin 8 of the RJ-45 interface. I care-
fully matched the RS-485 A lines to
the PLC’s RS-485 “-” lines and the
RS-485 B lines of the adapter to the
PLC’s RS-485 interface “+” lines, and
made the common ground connection
at the T100MD-888+ power interface. 

At this point, I purposely left the
T100MD-1616+ out of the LAN just
in case I made a mistake. I adjusted
the new IP settings of the TLServer to
match the new IP address of the PC and

activate the RS-485 COM port, plugged
the card into the PLC RS-485 LAN, and
applied power to the T100MD-888+. 

The result was both positive (no
smoke) and negative (no data). After
hours of troubleshooting, I managed to
correct some minor errors, like not
having a switch thrown on the PLC to
tell it that PLC COMM 3 was in charge.
I accidentally discovered that the RJ-45
connector on the card had a problem,

Photo 6—The selected location is S2, the Florida room. In
the upper right window, one read action (A1) is defined for
PLC 00. The lower right window is a detailed view of action
A1. The result is the Excel window, which shows LED4 (0x08
in cell B1) was active at the day and time shown in cell A1.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3c6beeed
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windows asking for upload passwords
that I had not enabled. The master-
acting-like-the-slave LED display and
the sudden password protected files
clued me that maybe the firmware of
the T100MD-888+ was toasted. So, I
figured I would totally erase the
T100MD-888+ and see if that would
fix anything. After an unsuccessful
attempt to find a nuke command in
TRiLOGI, I opened a TRiLOGI win-
dow with nothing in it and sent the
“nothing in it” ladder program to the
confused T100MD-888+ using the
directly attached PC serial port and
the PLC COMM1. That method
worked. I could now see the T100MD-
888+ across the Internet as ID 01 and
the funny LED pattern had left the
building. I loaded my sequencer pro-
gram into the T100MD-888+ remotely
via an Internet connection and the
LEDs went to work as designed. 

Will I be able to see the T100MD-
1616+ on the RS-485 LAN as ID 02?
Learning from my previous mistakes,
I made sure the DIP switch setting on
the T100MD-1616+ card was as I used
it as a slave in my NETCMD$ experi-
ments. I was certain it would not
speak on its own when it should be
keeping its interface shut. After put-
ting the T100MD-1616+ physically on
the new RS-485 LAN, I once again
remotely connected to the new
TLServer machine and selected 02 as
my desired target ID. I was in there
without a problem and I proceeded to
upload the same sequencer program
into the T100MD-1616+ at ID 02,
which was now running on the
T100MD-888+ at ID 01. 

I am now able to independently
control, program, and monitor either
PLC over the Internet. By turning on
the online monitoring feature of
TRiLOGI, I can pause, stop, and start
a PLC application and interrogate its
internal variables without writing
more code (see Photo 5). 

RECORDING THE MUSIC
Now that everyone is in tune, har-

monies from the PLC duet are wafting
across the Internet. The T100MD-
888+ and T100MD-1616+ not only
control things, but are also capable of
monitoring devices. There are times
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embedded-systems design and com-
munications. Fred may be reached at
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but I still could not get a consistently
good data transfer or TLServer connec-
tion to the new RS-485 LAN. Things
would work for a moment and then go
totally berserk for no apparent reason.

Before I went with a total RS-485
LAN, I experimented with using the
NETCMD$ command to manipulate ports
and memory on the slave T100MD-
1616+ with a master program running
on the T100MD-888+. I decided that
this might be my problem because the
card is now the master on the LAN
and not the T100MD-888+. 

I was doing some basic stuff like
reading and writing Input[1] and
Output[1] of the T100MD-1616+ from
code in the T100MD-888+. Here’s a
typical line of code:

Z$ = NETCMD$(3, 
�@01WVS02015555�)

The ASCII result of the NETCMD$ oper-
ation is returned in the variable Z$.
The 3 points to PLC COMM3 as the
port to use. The Write System Variable
host link command in my example
begins with a pointer to the ID of the
target PLC, @01. The 02 is a type para-
meter that correlates with the Output[n]
variable. 01 is the system variable
index denoted by the n in the brackets
and translates to Output[1]. The 16-bit
pattern “5555” is written to Output[1]
with the NETCMD$ command adding
the FCS and any other necessary char-
acters to the command stream. 

To read the system variable Input[1]
on the slave PLC, I issued the follow-
ing host link command:

Z$ = NETCMD$(3,�@01RVS0101�)

The significant differences in this line
of code are that the first 01 points to
the Input[n] system variable and the
second 01 is the index that substitutes
a one for n. Thus, the system variable
to be read is Input[1]. In both cases,
input and output, an ASCII string sim-
ilar to the host link command is
returned. You must parse and convert
the returned ASCII data.

I noticed that from time to time, I
would get the 01010101 LED sequence
I generated on the slave outputs on
the T100MD-888+. I also produced

when someone wants to know just
how things are with a PLC in the
form of a report or spreadsheet.
Normally, that means more work for
the poor PLC programmer, because
you must resort to writing scripts or
programs to capture the desired data.
However, that’s not so here.

When all of your PLCs are humming,
TRi-ExcelLink allows you to monitor
and collect data from up to eight PLC
sites into Excel spreadsheets (see
Photo 6). Basically, Tri-ExcelLink uses
read and write actions to gather data
from the multitude of PLC variables I
mentioned earlier. For instance, you
could read Output[1], which is the full
complement of 16 outputs on the
T100MD-1616+, and then write the
16-bit value representing Output[1] to
memory location 2000 (DM[2000]).
Then, you could set an action in Tri-
ExcelLink to put the contents of
memory location 2000 into a time
stamped cell of an Excel spreadsheet. 

PLC OR SBC
Although the T100MD-888+ and

T100MD-1616+ are called PLCs, in
reality they’re more like SBCs. The
capability of computing as well as
controlling outside your everyday
view sets T100MD+ devices into the
SBC realm. The strong Java-based
TRiLOGI software made putting the
PLCs on the Internet a snap. PLC or
SBC, the ’888+ and ’1616+ aren’t com-
plicated, they’re embedded. I

http://www.bb-elec.com
http://www.tri-plc.com
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ssentially every
electronic device

includes at least one
switch, if only to select

an option or start an action. Mechanical
switches seem to be a solved problem,
just pick one from a catalog and get
on with the more complicated deci-
sions. Sometimes, however, it’s the
simple things that get you. Mechanical
switches not only control current flow,
but also generate electromagnetic noise
while producing timing irregu-
larities. Let’s take a closer look at
some switches and their glitches. 

A SIMPLE SWITCH
Suppose you put a switch and

a 1-kΩ resistor in series with a
6-V supply, then connect an
oscilloscope across the switch.
What happens when you press
the switch? Well, if you’re like
me, nothing much, because you
haven’t properly set up the
oscilloscope triggering. After
you leap that hurdle, you’ll
probably see something like the
top screen in Figure 1.

Instead of the clean edge you
might expect, the switch I used
requires about 60 ms to settle
down. The transitions range

from a few microseconds to tens of
milliseconds, with no particular pace or
rhythm. For high-current, low-speed
applications like switching a lamp,
this poses no problem. But if you’re
sampling the switch with a microcon-
troller, you could easily come up with
the wrong answer, repeatedly in fact.

If you trawl the ’Net, you’ll see
schematics with capacitors across
switches to suppress transients. That
doesn’t work at all, as shown by the
lower screen in Figure 1, where I
bridged the switch with a 100-nF
bypass capacitor. 

Two things should stand out clearly.
First, switch bounce varies dramatically
between actuations, with this press
being complete in about 35 ms. Second,
the capacitor has no effect on the larger
bounces and not much on the smaller
ones; it does not round off the transi-
tions at all. That’s because the switch
shorts the cap when it closes, which, by
definition, produces an abrupt transi-
tion regardless of the size of the capac-
itor. When the switch opens, the cap
does slow the voltage rise time, but
the time constant of a small capacitor
and a small resistor is generally smaller
than the width of the bounce, so you
get a full voltage transition anyway.

Notice, too, that most of the low-to-
high transitions now have large, posi-
tive-going spikes reaching well above
the supply voltage. How can adding a
capacitor cause spikes? It turns out

Switches and Glitches

e
Although most of the
switch-related prob-
lems you run into
aren’t of epic propor-
tions, there are a lot of
little things that can go
wrong. This month,
Ed sorts through a
variety of problems
related to switches
and provides plenty of
insight for your next
electronics project.

Ed Nisley

ABOVE THE
GROUND
PLANE

Figure 1—Adding a capacitor to a switch doesn’t reduce bounce.
Instead, stray inductance combines with capacitance to form a
tank circuit that produces sharp spikes after each interruption.
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blade through the gap of an optical inter-
rupter. I drove the IR LED at 17 mA and
recorded the transistor current from a
6-V supply using a digital VOM.

The left graph in Figure 2 shows
that the interrupter switches from
fully off to fully on as the blade moves
about 2.5 mm, with most of the tran-
sition occurring over the central
1 mm. Although the curve is much
nicer than Figure 1, you can see that
this isn’t a digital device either.

Placing a pinhole aperture in front
of the phototransistor improves the
spatial resolution and reduces the
total signal. The graph on the right in
Figure 2 shows how a 0.5-mm pinhole
affects the response. In most cases,
you’d order an optical interrupter
with a specific aperture rather than
install one yourself.

A typical application would use an
analog comparator to produce a digital
logic output. A simple comparator with
a single threshold won’t work correctly,
however, because the phototransistor
responds to illumination from both the
IR LED and ambient light, as shown in
Figure 3. It’s easy to fall into this trap.
The phototransistor produces an output
current, not an output voltage, so you
must convert from current to voltage.
If you have 3 mA available, a 4.7-kΩ
resistor ensures that the output satu-
rates at 6 V with a third of that current.

The 4.7-kΩ resistor, connected from
the phototransistor to ground, generat-
ed a 250-mVPP signal when I posi-
tioned a fluorescent lamp about 6″
from the optical interrupter. That 50-
µA modulation was visible for any
blade location that didn’t saturate the
transistor. A single-threshold com-

that the capacitor forms a series-reso-
nant circuit with the stray inductance
in the wires connecting the power
supply, switch, and resistor. When the
switch is closed, about 6 mA flows
through the wires and resistors. When
the switch opens, the energy stored in
those inductances forces the current
through the only available path: the
oscilloscope’s 1-MΩ input impedance.

In theory, 6 mA through 1 MΩ
should produce a 6-kV spike. In prac-
tice, it’s much less than that, for the
simple reason that there isn’t much
energy stored in the stray inductors
and the current drops rapidly.
Nevertheless, pay attention if your cir-
cuit puts a switch at an unprotected
FET gate; those spikes can punch
through gate oxide like a hot knife
through butter.

You’ll also notice a few low-going
glitches on the trace in both captures.
Those are from the same effect in
reverse: when the switch closes, it
shorts the oscilloscope’s input capaci-
tance to ground and a single data sam-
ple might catch the small spike. It’s a
tiny effect, but still visible. Remember
that the oscilloscope sees the switch
through a meter of cable, so there’s
room for different voltages at either end,
at least for one or two nanoseconds.

You’ve probably seen designs that
add a large capacitor, tens or hundreds
of microfarads, across a switch. That’s
a terrible idea, because the switch
contact must carry the transient cur-
rent resulting from a dead short across
a live capacitor. If you assume the
switch has 10 mΩ of contact resist-
ance, the initial current from a 6-V
capacitor is 600 A and the total
energy in a 100-µF capacitor is
180 mJ. That can be enough to
either fuse the contacts of a
small switch closed or dramati-
cally reduce its life expectancy.

You can, however, exploit the
energy in a moderately large
capacitor to burn through the
film that inevitably collects on
switch contacts. By keeping the
energy stored in the capacitor
well within the switch contact
ratings, you can ensure the
switch makes a solid, albeit
bouncy, connection every time.
Smaller capacitors may be needed for
other reasons. For example, in previ-
ous columns I’ve used small capaci-
tors across switches to prevent RF
from entering circuits. At those fre-
quencies, small caps can be beautiful.

THE OPTICAL ALTERNATIVE
An optical interrupter can be a nice

alternative to a mechanical switch,
because it operates without switching
transients and with electrical isolation
from the switch actuator. Basically, an
optical interrupter is a U-shaped hous-
ing with a phototransistor peering
across the U at an IR emitter. The tran-
sistor is on when it can see the emitter
and off when an object blocks its view.

Photo 1 shows the breadboard I used
to collect the data for Figure 2. A micro-
meter positioning slide moves a razor
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Figure 2—An optical interrupter provides a smooth transition, but increasing its spatial resolution dramatically
reduces the available current. Note the different horizontal and vertical scales.

Figure 3—The phototransistor can pick up external illumination,
such as this signal from a fluorescent lamp appearing across a
4.7-kΩ resistor. Fluorescent lamps have a 120-Hz flicker that
appears as an asymmetric 60-Hz waveform.

Figure 4—A relay without transient suppression is an
invitation to disaster, but adding those components has
other effects on the circuit.
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parator will produce 120-Hz chatter
as the blade moves into the inter-
rupter. The solution requires enough
hysteresis to ensure that the output
switches once and remains
switched until the input changes by
more than the possible variation
caused by ambient light. You deter-
mine those values for each installa-
tion based on the phototransistor
sensitivity, ambient light intensity,
and mechanical speed of the blade.

Pop Quiz: Will a light shield suffice
to eliminate ambient light? Hint:
Low-pressure sodium lamps put out a
tremendous amount of energy at
589 nm (the sodium D-line), well
within a typical phototransistor’s
response curve, with modulation at
nearly all harmonics of 60 Hz. Extra
Credit: Will a pinhole eliminate
enough extraneous light to reduce
the problem? Hint: Consider your
circuit’s saturation levels. So, you
may need not only hysteresis, but a
major low-pass or comb filter as well.
Suddenly, that simple optical switch
looks a lot more complex, doesn’t it?

RELAY MADNESS
I suspect relays have caused more

digital designer headaches than all
other circuit components com-
bined. Everybody has a horror story
about how a relay messed up their
logic. Discovering why requires a
trip through the analog domain.

Figure 4 shows a simple circuit
using a 12-V DIP DPDT relay with
a 700-Ω coil that draws 17 mA at
12 V. Any small NPN transistor
will suffice for the driver (I used a
2N4401), and a pulse generator set
for a 2-Hz square wave provides
repetitive switching. 

The top screen in Figure 5 shows
the magnitude of the problem with
no suppression components. The
top trace reveals 40-VPP transients
on the 12-V power supply that also
couple into the base drive circuit
appearing in the lower trace. Further
probing revealed a 1.4-MHz, 80-VPP

oscillation at the transistor collec-
tor. Fairly obviously, transients of
this magnitude would disturb near-
ly any circuitry using the same

Figure 5—The lower trace in each screen shot shows the
logic level driving the transistor switch. The upper trace shows
the 12-V supply. Without suppression, the relay causes 40-V
supply transients. A capacitor or Schottky diode dramatically
reduces the problem. Note the different scales.

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aef114a
http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3aeec4df
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power supply. Imagine the results if
you drove a 5-V version of this relay
directly from the logic supply.

Adding a 100-nF capacitor across the
relay coil produced the middle screen
in Figure 5. Note the change in both
time and voltage scales. Compared with
the previous example, this is a small
and well-controlled transient caused
by the current circulating through the
capacitor and coil. The initial slope of
the transient shows the capacitor
charging from a constant-current
source. Plugging those measurements
into the familiar capacitor equation
indicates that the initial current is
about 20 mA, which is close enough to
the actual 17 mA to inspire confidence:

The energy driving the current
comes from the magnetic field stored
in the armature and core of the relay.
As that field collapses, the voltage
across the inductor remains relatively
constant:

However, as the transistor shuts off,
the current forces an increasing voltage
across its collector-emitter junction.

A small resistor in series with the
capacitor increases the power dissipa-
tion and reduces the duration of the
transient. That RC circuit, called a
snubber, should be tucked close to the
relay coil terminals to reduce stray
inductance that would cancel out the
effect of the capacitance. Replacing

the capacitor with a Schottky diode
produces the transient in the lower
screen of Figure 5. The voltage
remains low until the core emerges
from saturation, then jumps with the
coil current spike.

Homework: Build a similar circuit,
measure the voltage and current, and
then compare the energy stored in the
coil when power is off with the amount
dissipated in the various resistances.
Although relays aren’t generally used
in circuits that demand precise timing,
adding transient suppression to the coil
can dramatically increase the relay’s
release time. Figure 6 shows what
happens to the circuit in Figure 4. 

In the top trace, the lack of suppres-
sion should be obvious in the burst of
noise just after the input goes low.
About 660 µs later, the common con-
tact comes off the normally closed
contact and the channel two voltage
begins dropping. After 500 µs, the fly-
ing common contact hits the normally
closed contact and begins bouncing for
500 µs. Roughly 1.5 ms after the input
goes low, the relay finally stabilizes.

Photo 1—A razor blade mounted on a micrometer slide
cuts off the light path between the IR LED and photo-
transistor of the optical interrupter. The micrometer bar-
rel shows the slide position in 0.02-mm increments.
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Recall that a Schottky diode suppress-
es the coil transient by diverting current
from the transistor that is turned off
back through the coil. Because the coil
can’t tell the difference between current
through the transistor and recirculating
current (electrons being identical, after
all), the relay remains active until the
current drops below the release point. 

with firmware is a nontrivial proposi-
tion. It’s easy to get it almost right,
but you must pay attention to limit-
ing cases. Watch out for infinite loops
and razor-fine glitches!

You should invest a few hours
breadboarding some circuits and pon-
dering your oscilloscope if you’ve
never seen these effects up close.
Believe me, you’ll have a much better
understanding of why switches and
relays can scramble your firmware. 

Speaking of relays, the 9th Annual
Trinity College Home Fire-Fighting
Robot Contest takes place in April.
You may check the schedule and
details at www.trincoll.edu/events/
robot/. I’ll see you there! I

The lower screen in Figure 6 shows
this effect, as the NO contact now
opens at 1.3 ms and the NC contact
first closes at 4.4 ms. Removing the
transient doubles the release time and
increases the “no contacts closed” dura-
tion. Homework: The snubber resistor I
mentioned earlier dissipates energy
quicker. Measure the effect of various
RC combinations on release time. 

The graceful exponential voltage
decay appearing in channels two and
three comes from the oscilloscope
probe’s input capacitance (15 pF) dis-
charging through its input resistance
(10 MΩ). The time constant in the fig-
ure is 200 µs, which indicates an addi-
tional 5 pF of stray capacitance in the
wiring. Close enough?

CONTACT RELEASE
For switch debouncers, check out

the MAX6816-18 from Maxim. If you
insist on building a switch debouncer
yourself, the series of pages starting at
www.play-hookey.com/digital/rs_
nand_latch.html should get you start-
ed. Note that debouncing a switch

Ed Nisley, PE, is an electrical engi-
neer and a ham radio geek (call sign
KE4ZNU). You may contact him at
ed.nisley@ieee.org.

RESOURCE
Maxim Integrated Products, “Switch
Bounce and Other Dirty Little
Secrets,” A153, September 2000.

Figure 6—Suppressing the coil transient lengthens the
relay’s release time. Trace 2 shows the normally closed
contact bouncing as the relay armature comes to rest. 
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educing the
number of compo-

nents in a circuit has
many benefits. The most

obvious yield is inventory and assem-
bly cost savings. Circuitry requires
varying amounts of both analog and
digital components. For the most part,
analog circuitry requires the majority
of components. So, improvements in
analog devices will have a major effect
on the overall component count. 

You’ve seen the micro grow to
include internal RAM and reprogram-
mable ROM. It was a natural progres-
sion for these micros to begin includ-
ing digital peripherals as well, like
UARTs, counters, timers, and PWMs.
The core processor now has a ton of
models with various permutations.
You’ve no doubt used one of those
white blobs to make a prototype. You
stick all of your components into an
array of small contact buses and then
interconnect them using small jumper
wires. Imagine if manufacturers gave
you the ability to use this technique
within a single chip! 

Application-specific integrated cir-
cuit (ASIC) manufacturers have been
filling a niche for a long time. Mixed-
signal ASICs reduce your parts count
by offering a way to include all of your

circuitry on the same chip. However,
the outcome is specific to your partic-
ular design and no changes can be
made without producing a new ASIC. 

Cypress Microsystems changed the
rules when it introduced a family of
programmable System-on-a-Chip (SoC)
microcontrollers. The CY8C25/26xxx
combines a fast core, RAM data mem-
ory, reprogrammable code memory,
and digital and analog blocks onto the
single chip. These blocks can act like
different peripherals each time you
reconfigure them. Configuration of all
of the blocks is mapped into the regis-
ter space of the core (see Figure 1).

PSoC
The Harvard architecture of this 8-bit

core provides faster overall throughput
because it has separate address and
data buses. Although the processor
can be clocked up to 24 MHz, slower
clocks have the advantage of consum-
ing less current. The instruction set
has more than 130 instructions based
on variants of less than 30, including
bit manipulations. All devices have
access to both analog and digital
blocks from the smallest 8-pin device
to the largest 48-pin device. 

Each block can be used alone for sim-
ple functions or in combination with
other blocks to produce higher level
functions. An 8 × 8 hardware multiply
and 32-bit accumulate module (MAC)
presents results in a single instruction
cycle. Every I/O pin can serve as an
interrupt source and has highly config-
urable output drive specifications. 

The main oscillator achieves ±2.5%
accuracy without the use of a crystal.
If higher accuracy is necessary, a 32-kHz
clock crystal provides both low-speed
oscillator accuracy and a PLL refer-
ence for the high-speed oscillator. The
low-speed oscillator, which can run
without a crystal, provides additional
clocking for the watchdog/sleep timer
and the PSoC blocks. 

The flash memory has an endurance
of more than 100,000 erase/write cycles
and uses a flexible protection scheme
to prevent not only unwanted writes
but also unauthorized reads. Let’s take
a brief look at some important points
of the basic architecture before delv-
ing into the analog and digital blocks.

r
With cash
prizes on
the line in
the PSoC
Design

Challenge, Jeff details
working in the world
of SoC. Anyone new
to designing with SoC
parts will walk away
with enough insight to
implement an SoC in
their next project.

Jeff Bachiochi

FROM THE 
BENCH

A Design Challenge 2002 Primer

You Too Can 
Design with SoC
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0x0000. User memory begins at
0x0040 and ends with the avail-
able memory up to 16 KB. 

The internal RAM memory
is 128 or 256 KB. The hardware
stack builds up from low memo-
ry at 0x00 to a user-defined top
of stack (TOS). General-purpose
RAM extends from the TOS to
the end of available RAM. 

The register memory is divid-
ed into two register banks—zero
and one. The bank is selected
using XIO, bit 4 of the CPU_F
non-addressable register. All
peripheral registers, including
those associated with the pro-
grammable analog and digital
blocks, have a location set aside

in at least one of the two register banks.

I/O
Refer to Figure 3 for the I/O port

register configurations. The state of an
output bit is set when output data is
written to the data register. The logic
state of an input pin is read through
the same data register. 

The interrupt enable register allows
every bit to be enabled as an interrupt
source. The global select register
allows the I/O pin to be routed to one
of the global buses for use with the
analog and digital blocks. The next
pair of drive mode registers designates
the pin configuration. 

The state (logic 0 or 1) of each pin
can be configured as High-Z, hard-
driven, or resistive pull-up/down.
Finally, the last pair of interrupt con-
trol registers configures any enabled
interrupt pin for rising, falling, or
change-of-state interrupt operation.

CLOCKING
The main internal oscillator is sen-

sitive to voltage because a crystal
doesn’t control it (unless you add an
external crystal). The main oscillator
is factory-trimmed (8 bits) for 5 VDC.
This value is stored in the trim regis-
ter and can be modified if a VCC other
than 5 VDC is used. An additional
low-speed oscillator has a similar fac-
tory-set, 6-bit trim register. Bit 7 of
the low-speed trim register allows the
low-speed oscillator to be turned off. If
a 32-kHz crystal is connected as an

CORE
The primary operation of the

M8C core is controlled through
six primary registers, which are
not directly accessible. Although
these registers are not mapped
into either of the two register
banks, they affect or are effect-
ed by various instructions
either directly or indirectly.

Figure 2 shows the bit break-
down of the six CPU registers
(CPU_F, CPU_A, CPU_X,
CPU_SP, and CPU_PCH/PCL).
Note: Although it isn’t shown
in Figure 2, the upper three
reserved bits will be used for
RAM bank switching on
devices that support more than
256 bytes of RAM.

The instruction set is broken down
into five areas, program flow, nonde-
structive tests, arithmetic, movement,
and logical manipulations. There are
10 possible addressing modes for
instructions. Four modes affect the
source register: Immediate, Direct,
Indexed, and Indirect Post Increment.
The source is the constant value dur-
ing Immediate mode. RAM or the reg-
ister location’s value is the source dur-
ing Direct mode. For Indexed mode, an
offset is added to RAM or a register’s
location and the new location’s value
is the source. For Indirect Post
Increment mode, a pointer stored at a

RAM location points to the source
value; the pointer is incremented after
the instruction is executed.

Three modes, Direct, Indexed,
Indirect Post Increment, affect the
destination register. Three additional
modes affect both the source and des-
tination and are combinations of the
previous modes: Destination Direct
Source Immediate, Destination
Indexed Source Immediate, and
Destination Direct Source Direct.

RAM, flash memory, and register
banks serve as three separate memory
spaces for the CY8C2xxx. The internal
flash memory is a linear array, begin-
ning with interrupt vectors at location

Flash
program
memory

M8C
8-bit

microcontroller
core

Voltage
reference

32-kHz Crystal
oscillator

Internal 32-kHz
oscillator

Watchdog
timer

Sleep
timer

SRAM

Precision oscillator
and PLL

Analog
PSoC blocks

Digital
PSoC blocks

Decimator

MAC
Multiply/accumulate

General-purpose
I/O

Temperature
sensor

Low-voltage
detection

Power-on reset
control

Interrupt
controller

Programmable
interconnection

Pin-by-pin configurable
I/O transceivers

Total I/O pin count
varies by device

Internal I/O bus

Adder/data

PSoC blocks

Adder/data

X2

X1

Figure 1—The CY8C2xxx microcontroller goes way beyond the basic core with on-chip RAM and flash memory.
The general-purpose I/O interfaces internally to programmable interconnections for both analog and digital blocks.

Address Interrupt Description
priority number

0x0004 1 Supply monitor interrupt vector
0x0008 2 DBA 00 PSoC block interrupt vector
0x000C 3 DBA 01 PSoC block interrupt vector
0x0010 4 DBA 02 PSoC block interrupt vector
0x0014 5 DBA 03 PSoC block interrupt vector
0x0018 6 DBA 04 PSoC block interrupt vector
0x001C 7 DBA 05 PSoC block interrupt vector
0x0020 8 DBA 06 PSoC block interrupt vector
0x0024 9 DBA 07 PSoC block interrupt vector
0x0028 10 Acolumn 0 interrupt vector
0x002C 11 Acolumn 1 interrupt vector
0x0030 12 Acolumn 2 interrupt vector
0x0034 13 Acolumn 3 interrupt vector
0x0038 14 GPIO interrupt vector
0x003C 15 Sleep timer interrupt vector
0x0040 On-chip program memory starts here

Table 1—Interrupt vectors occupy the bottom of the flash memory space.
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be further divided by a 4-bit divider
for clocking any of the analog blocks
(more on this a little later).

CPU FEATURES
CY8C2xxx devices have several

hardware features. The two’s compli-
ment MAC provides immediate
results. Writing 8-bit signed values to
both MUL_X and MUL_Y will cause a
multiply to occur and the result avail-
able as a 16-bit signed word in
MUL_DH and MUL_DY. A multiply
and accumulate begins when either
the MAC_X or MAC_Y register is
written to. The 32-bit signed double
word result is available in registers
ACC_DR0 through ACC_DR3.

Although the analog blocks include
high-speed comparators, without a
data decimator these comparators
would be little more than 1-bit A/D
converters. The decimator allows a
high-speed 1-bit datastream to be con-
verted to lower speed multiple bit
data. When used in conjunction with
the other PSoC blocks, this function
can provide an n-bit ADC. 

There are two types of reset for
CY8C2xxx devices. Power-on reset
(POR) takes place when VCC rises

external source for the low-speed
oscillator, the crystal also can serve as
a phase locked loop (PLL) reference
for the main oscillator, thus improv-
ing the ±2.5% accuracy of the inter-
nally trimmed oscillator.

As a base of operations, all available
clocks are derived from one of these
two sources (see Figure 4). So, it makes
sense that these two clocks are avail-
able from the start. The SLP clock is
derived from the 32-kHz clock and runs
from 512 Hz down to 1 Hz. The 24V1
clock has a 4-bit divider from the 24M
main oscillator, which allows it to run
from 24 MHz down to 1.5 MHz. The
24V2 clock has a 4-bit divider from
the 24V1 divider, which allows it to
run from 24 MHz down to 93.7 kHz
(based on both 24V1 and 24V2 values). 

The CPU clock has an 8-bit divider
derived from the 24-MHz main oscil-
lator and can divide the source down
to 93.7 kHz. The digital blocks can
also produce ACLK0 and ACLK1
clock signals to be used by the analog
blocks. These two clocks along with
the 24V1 and 24V2 clocks are avail-
able to each of the four Acolumnx
analog block multiplexers. These
select one of the clocks and allow it to

above the 2.3-VDC threshold. An
external reset input (CY8C26xxx) will
also force a POR. A POR provides a
minimum of 864 µs for the VCC to
complete its rise prior to executing
any code at the reset vector. A watch-
dog reset (WDR, based on SLP) will
also force a POR. Register CPU_SCR
(0xFF in both register banks) holds
status bits showing which function
caused the reset.

Sleep mode reduces power con-
sumption in one of two ways. When
the stop bit is set in the CPU-SCR reg-
ister, the main oscillator is halted. All
functions associated with this clock or
those derived from it cease. 

To further reduce current, you can
disable the analog block power by
clearing the PWR bits in register
ARF_CR (0x63 in bank 0). When the
CPU is halted, only an interrupt,
WDR, or POR will restart the proces-
sor. Although the stop bit is reset,
allowing the CPU to operate, you
must turn on the analog power. The
low-speed oscillator continues to run
unless you intentionally disable it. 

Another hardware feature is an on-
board Switch mode pump that creates
a temporary working voltage higher
than the rising VCC to allow the sup-
ply voltage monitor (SVM) circuitry to
operate properly. One of eight pro-
grammable low-voltage trip levels can
then initiate a POR if the VCC is lost
or reduced for some reason. An inter-
nal band-gap reference source is used
for the SVM and as an analog refer-
ence. Because the band-gap reference
is sensitive to voltage, a trim register
is provided to adjust compensations
when a VCC other than 5 VDC is used.

The CPU has an on-board supervi-
sor ROM to manage flash memory
programming, erasure, and protection
issues. The ROM has additional capa-
bilities like reading product IDs and
calculating flash memory block
checksums. You can access these
ROM routines with the system super-
visor call instruction SSC. Various
functions can be called based on the
value in the accumulator (ACC).
Certain functions require parameters
to be preset into the upper eight RAM
locations and any values returned are
put in those same locations.

Flags register (CPU_F)

 Bit 7 6 5 4 3 2 1 0

 POR 0 0 0 0 0 0 1 0

 Read/write – – – RW R RW  RW RW 

 Bit name Reserved Reserved Reserved XIO Super Carry Zero Global IE

Bit 0—Global IE determines whether all interrupts are enabled or disabled.  Must be set or reset with logical
  instructions (0 = disabled; 1 = enabled) 
Bit 1—Zero is set by the CPU to indicate whether or not there has been a zero result in the previous logical/
 arithmetic operation (0 = not equal to zero; 1 = equal to zero) 
Bit 2—Carry is set by the CPU to indicate whether or not there has been a carry in the previous logical/
 arithmetic operation (0 = no carry; 1 = carry) 
Bit 3—Super indicates whether the CPU is exexuting user code or supervisor code (0 = user code;
  1 = supervisor code) 
Bit 4—XIO is set by you to select between the register banks.  Must be set or reset with logical instruction.
  “Set” can also mean to put a logic 1 in this bit (0 = Bank 0; 1 = Bank 1). 
Bit 5—Reserved 
Bit 6—Reserved 
Bit 7—Reserved

Accumulator register (CPU_A), Index register (CPU_X), Stack pointer register (CPU_SP), Program counter 
 high register (CPH_PCH), and Progam counter low register (CPU_PCL)

 Bit 7 6 5 4 3 2 1 0

 POR 0 0 0 0 0 0 0 0

 Read/write System System System System System System System System

 Bit name Data [7] Data [6] Data [5] Data [4] Data [3] Data [2] Data [1] Data [0]

For bits 0–7, an 8-bit data value:
 • holds the result of any logical/arithmetic instruction that uses a source addressing mode
 • holds an index for any instruction that uses an indexed addressing mode
 • holds a pointer to the current top of the stack
 • is the high-order byte of the program counter
 • is the low-order byte of the program counter

Figure 2—You cannot directly access these system registers.
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Port data register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write RW RW RW RW RW RW  RW RW 
 Bit name Data [7] Data [6] Data [5] Data [4] Data [3] Data [2] Data [1] Data [0]

When written, bits 0–7 are for output on the port pins.  When read, they are the state of the port pins.  

Port 0 data register PRT0DR is at address bank 0, 00h
Port 1 data register PRT1DR is at address bank 0, 04h
Port 2 data register PRT2DR is at address bank 0, 08h
Port 3 data register PRT3DR is at address bank 0, 0Ch
Port 4 data register PRT4DR is at address bank 0, 10h
Port 5 data register PRT5DR is at address bank 0, 14h

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name Int En [7] Int En [6] Int En [5] Int En [4] Int En [3] Int En [2] Int En [1] Int En [0]

Writing bits 0–7 sets the pin interrupt state (0 = interrupt disabled for the pin; 1 = interrupt enabled for the pin)

Port 0 interrupt enable register PRT0IE is at address bank 0, 01h
Port 1 interrupt enable register PRT1IE is at address bank 0, 05h
Port 2 interrupt enable register PRT2IE is at address bank 0, 09h
Port 3 interrupt enable register PRT3IE is at address bank 0, 0Dh
Port 4 interrupt enable register PRT4IE is at address bank 0, 11h
Port 5 interrupt enable register PRT5IE is at address bank 0, 15h

Port interrupt enable register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name GlobSel [7] GlobSel [6] GlobSel [5] GlobSel [4] GlobSel [3] GlobSel [2] GlobSel [1] GlobSel [0]

Writing bits 0–7 determines whether or not a pin is connected to the global input bus and global output 
 bus (0 = not unconnected; 1 = connected)
Port 0 global select register PRT0GS is at address bank 0, 02h
Port 1 global select register PRT1GS is at address bank 0, 06h
Port 2 global select register PRT2GS is at address bank 0, 0Ah
Port 3 global select register PRT3GS is at address bank 0, 0Eh
Port 4 global select register PRT4GS is at address bank 0, 12h
Port 5 global select register PRT5GS is at address bank 0, 16h

Port global register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name DM0 [7] DM0 [6] DM0 [5] DM0 [4] DM0 [3] DM0 [2] DM0 [1] DM0 [0]

The two Drive mode bits that control a particular port pin are treated as a pair and are decoded as follows:
Output state 0 = Drive mode 0 0 = 0 resistive (default) Output state 0 = Drive mode 0 1 = 0 strong
Output state 0 = Drive mode 0 0 = High Z  Output state 0 = Drive mode 1 1 = 0 strong
Output state 0 = Drive mode 0 0 = 1 strong (default) Output state 0 = Drive mode 0 1 = 1 strong 
Output state 0 = Drive mode 1 0 = High Z  Output state 0 = Drive mode 1 1 = 1 resistive 

Port 0, Drive mode 0, register PRT0DM0 is at address bank 0, 01h
Port 1, Drive mode 0, register PRT1DM0 is at address bank 0, 05h
Port 2, Drive mode 0, register PRT2DM0 is at address bank 0, 09h
Port 3, Drive mode 0, register PRT3DM0 is at address bank 0, 0Dh
Port 4, Drive mode 0, register PRT4DM0 is at address bank 0, 11h
Port 5, Drive mode 0, register PRT5DM0 is at address bank 0, 15h

Port drive mode 0 register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name DM1 [7] DM1 [6] DM1 [5] DM1 [4] DM1 [3] DM1 [2] DM1 [1] DM1 [0]

See the truth table for Port Drive mode 0 register (PRT0DM0–PRT5DM0)

Port 0, Drive mode 1, register PRT0DM1 is at address bank 1, 01h
Port 1, Drive mode 1, register PRT1DM1 is at address bank 1, 05h
Port 2, Drive mode 1, register PRT2DM1 is at address bank 1, 09h
Port 3, Drive mode 1, register PRT3DM1 is at address bank 1, 0Dh
Port 4, Drive mode 1, register PRT4DM1 is at address bank 1, 11h
Port 5, Drive mode 1, register PRT5DM1 is at address bank 1, 15h

Port Drive mode 1 register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name IC0 [7] IC0 [6] IC0 [5] IC0 [4] IC0 [3] IC0 [2] IC0 [1] IC0 [0]

The two Interrupt Control bits that control a particular port pin are treated as a pair and are decoded as follows:
IC1 [x], IC0 [x] = 0 0 = Disabled (default)  IC1 [x], IC0 [x] = 0 1 = Falling edge (negative)
IC1 [x], IC0 [x] = 1 0 = Rising edge (positive) IC1 [x], IC0 [x] = 1 1 = Change from last direct read

Port 0, Interrupt Control 0, register PRT0IC0 is at address bank 1, 02h
Port 1, Interrupt Control 0, register PRT1IC0 is at address bank 1, 06h
Port 2, Interrupt Control 0, register PRT2IC0 is at address bank 1, 0Ah
Port 3, Interrupt Control 0, register PRT3IC0 is at address bank 1, 0Eh
Port 4, Interrupt Control 0, register PRT4IC0 is at address bank 1, 12h
Port 5, Interrupt Control 0, register PRT5IC0 is at address bank 1, 16h

Port interrupt control 0 register

 Bit 7 6 5 4 3 2 1 0
 POR 0 0 0 0 0 0 0 0

 Read/write W W W W W W W W 
 Bit name IC1[7] IC1 [6] IC1 [5] IC1 [4] IC1 [3] IC1 [2] IC1 [1] IC1 [0]

The two Interrupt Control bits that control a particular port pin are treated as a pair and are decoded as follows:
IC1 [x], IC0 [x] = 0 0 = Disabled (default)  IC1 [x], IC0 [x] = 0 1 = Falling edge (negative)
IC1 [x], IC0 [x] = 1 0 = Rising edge (positive)  IC1 [x], IC0 [x] = 1 1 = Change from last direct read

Port 0, Interrupt Control 1, register PRT0IC1 is at address bank 1, 03h
Port 1, Interrupt Control 1, register PRT1IC1 is at address bank 1, 07h
Port 2, Interrupt Control 1, register PRT2IC1 is at address bank 1, 0Bh
Port 3, Interrupt Control 1, register PRT3IC1 is at address bank 1, 0Fh
Port 4, Interrupt Control 1, register PRT4IC1 is at address bank 1, 13h
Port 5, Interrupt Control 1, register PRT5IC1 is at address bank 1, 17h

Port interrupt control 1 register

Figure 3—Up to 44 bits of I/O are supported on CY8C2xxx devices. The flexibility of each I/O bit is visible though
the seven registers used to configure each port. If these registers are implemented, port 5 is 4 bits wide. 
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INTERRUPTS
Of the 15 interrupts (excluding

reset) in the vector table of a
CY8C2xxx device, 12 are associated
with the analog and digital blocks (see
Table 1). The other three interrupts
come from the SMV, sleep timer, and
general-purpose I/O pins. Of the 12
PSoC interrupts, four come from the
Acolumn x analog block column out-
puts. Eight interrupts come from the
digital PSoC blocks. 

Two interrupt mask registers
(INT_MSK0/1) allow each of these
sources to be enabled and disabled
separately. A separate regis-
ter, INT_VC, holds the highest
priority pending interrupt.
(Warning: Writing to this regis-
ter clears all pending inter-
rupts!) The GPIO interrupt
vector is an OR of all enabled
port bit activated interrupts.
This could get confusing when
you’re figuring out where the
interrupt(s) came from.

PSoC BLOCKS
Programmable System-on-

a-Chip blocks are user-config-
urable system resources. The
PSoC from Cypress includes
eight digital and 12 analog
PSoC blocks. These are con-
figured using PSoC designer
software. Not only will the
designer software help in
the configuration process,
but will also prepare a
device datasheet unique to
your configuration. 

Many of the digital block
functions may be included in
today’s microcontrollers, but
the ability to configure the
function of each block allows

you to include multiples of the same
function for those special applications.
Including analog functions in a micro-
controller is not a new idea, but the
CY8C2xxx analog blocks include
devices not previously available on a
microcontroller. Let’s take a closer look
at both of these types of PSoC blocks.

DIGITAL BLOCKS
The eight PSoC digital blocks are

divided into two types—four are basic
and four are communications-type
digital blocks. The communications
blocks are identical to the basic

blocks except for additional communi-
cations features. Each of the digital
blocks (00 through 07) has a function,
input, and output register. 

The function register (DBAxxFN)
allows the block to be defined as a
timer, counter, cyclical redundancy
checker, psuedo-random sequencer,
dead-band generator, UART, or SPI
module. Some of these functions are
capable of being chained for larger
than 8-bit operations. The input regis-
ter (DBAxxIN) defines the path of any
data or clock source used by the block.
These can come from the system
clocks, analog comparator bus, global
input and output bus (port pins), or
output from one of the other digital
blocks. The output register (DBAxxOU)
defines the path for any data out of
the block. Here the choices are the
global input and output buses or the
interrupt controller. Digital block out-
puts also can be used as a clock input
source to the analog PSoC blocks.

In addition, each of the digital func-
tion blocks has three data registers

and a control/status register.
The three data registers
(DBAxxDR0–2) have different
uses depending on the func-
tion chosen in the function
register. Table 2 lists the reg-
ister definitions. The control/
status register (DBAxxCR0)
uses only 1 bit for enabling
and disabling unless it is con-
figured for one of the two
communications functions,
UART, or SPI. These func-
tions have additional con-
trol/status bits specific to
their functions.

The timer function of the
digital PSoC block can capture
incoming edges and interrupts
on an 8-bit compare or be
chained into longer counts.
The timer can also create peri-
odic interrupts. As a counter
function, the block can count
tics between edge inputs or,
with the addition of a down
counter, produce duty-cycle-
adjustable PWM output. 

The dead-band generator
produces complementary out-
puts equal to the input fre-
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Figure 4—The system clocks are derived from the internal main oscillator and
the internal/external low-speed oscillator.

Function DR0 R/W DR1 R/W DR2 R/W

Timer Count R* Period value W Capture value RW
Counter Count R* Period value W Compare value RW
CRC Current value/CRC residue R* Polynomial mask value W Seed value RW
PRS Current value R* Polynomial mask value W Seed value RW
Dead-band Count R* Period value W Not used RW
UART Shifter N/A TX data register W RX data register R
SPI Shifter N/A TX data register W RX data register R

R*—each time the register is read, its value is written to the DR2 register

Table 2—For each function selected, the digital block data registers hold function-specific data.
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quency of the input, but with a pro-
grammable dead-band time (time
when both outputs are off) meant to
drive MOSFETs for motor control.
Programmable linear feedback shift
registers can be used for psuedo-ran-
dom generator and cyclical redundan-
cy check functions. 

UART transmit and receive functions
are treated separately. This allows you
to conserve resources when bidirection-
al communications is not necessary. As
an SPI master, clock and bidirectional
data lines are implemented. If necessary,
SS must be implemented using direct
port pin control. In SPI slave mode,
SCLK, SDAT, and SS are all implement-
ed. Communication interrupts are
generated for Transmitter Empty and
Receiver Full UART functions and an
SPI Transmitter Empty function. 

ANALOG
Getting any kind of analog support

in a microcontroller is a relatively
new idea. Cypress incorporates 12
analog PSoC blocks in CY8C2xxx
devices. These analog blocks are con-
tinuous-time and switch-capacitive.
The four continuous-time blocks con-
tain programmable gain/attenuation
circuitry for op-amp and comparator
configuration. Three registers are used
to configure the continuous-time
blocks (ACAxxCR0–2). 

The first register sets the program-
mable resistor divider and how it is
internally connected to provide either
gain or attenuation around the op-
amp. The second register routes vari-
ous signal inputs to the inverting and
noninverting inputs of the op-amp
and enables or disables output to the
analog output bus or comparator bus.
The third and final register deter-
mines if the control latch is transpar-
ent and on which phase the latch
occurs. The compensation for the op-
amp also can be enabled or disabled,
which will improve the amplifier
(comparator) switching times. 

The eight switch-capacitive blocks
are divided into four type A and four
type B blocks. Type A blocks have
three (two switched and one non-
switched) input arrays of binary-
weighted capacitors (plus a direct
capacitor input normally used in con-
junction with a type B block for bi-
quad filter configurations) with a non-
switched feedback capacitor. Type B
blocks have two switched input arrays
of binary-weighted capacitors, a non-
switched feedback capacitor, and an
output array of binary-weighted
capacitors for bi-quad configurations. 

The three control registers associat-
ed with the two switch capacitor
blocks are similar and for the sake of
brevity I will treat them as identical.

Photo 1—In the selection screen of the device editor, you get to choose preconfigured module types. Each pre-
configured module comes complete with its own datasheet. 

http://nt5-stats.localweb.com:88/55?click&circuitcellar.com&3c6bf027
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The first register (ASA/BxxCR0) defines
the first switched input capacitor
value and feedback capacitor value.
This register also controls the phasing
of the capacitor switches. The second
register (ASA/BxxCR1) defines the
second switched input capacitor value
and the input multiplexer selection. 

The third control register
(ASA/BxxCR2) defines the third non-
switched capacitor value. This serves
as the third array input for type A
blocks. For type B blocks, this is an
array on the output. ASA/BxxCR2
also controls connection to the analog
and comparator output buses and the
gated switches, which can be used to
short input capacitors to ground.

There are a few odd registers that
are necessary for control and status of
the analog blocks. The analog compara-
tor control register (CMP_CR) allows
the state of the comparator bus for each
analog column x (0–3). It also defines
whether the Acolumnx interrupt inputs
are directly from the bus or qualified
with the falling edge of phase two for
synchronization purposes. 

The analog synchronization control
register (ASY_CR) supports a way to
perform synchronization with the
switch capacitor blocks. The SYN-
CEN bit will prevent any write to the
switch capacitor registers from being
operated on until the rising edge of

phase one. Also, when the block is
used as a successive approximation
ADC, this register can limit the
number of bits converted to speed up
conversion times.

To route analog signals, there are
two registers, an input multiplexer
(called AMX_IN) and an output buffer
(called ABF_CR) register. The input
multiplexer determines which pins of
port A are used as inputs to the ana-
log PSoC blocks. The output buffer

register enable/disables analog col-
umn x to its port A output pin.
There is also control over the
strength of the output drive.

ARF_CR, the analog bias and refer-
ence register, controls the amount of
bias and reference used for the analog
array. It also controls power to all the
analog blocks and can be used to
reduce power consumption by shut-
ting down all of the analog circuitry.
The final register is the modulation
control register (AMD_CR). AMD_CR
can select a modulation source for
analog columns zero and two by
applying the modulation source the
switched capacitor block. 

As far as the possible interconnects
go, it would be a waste of space to
allow entire flexibility, in other words
to allow every possible connection
between blocks. The choices are sim-
plified by predetermining which make
the most sense. Figures 5 and 6 illus-
trate the block interconnections.

PSOC DESIGNER
To help get a feel for the capabilities

of CY8C2xxx devices, you need to
take a look at the design tools avail-
able for the CY8C2xxx family of PSoC
microcontrollers. The PSoC Designer
is a PC-based integrated development
environment (IDE) configured to take
you from project design through appli-

Photo 3—The device editor’s final step is the physical connection of I/O signals to the pins of the device.

Photo 2—Placement of a selected module is the next task. The design editor shows legal placement locations. 
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cation development including device
configuration, compiling, assembling,
debugging, and device programming.
All of this is handled in three steps.
Here’s a look at each.

Things start off at a gentle pace
with the creation of a project. First,
you’re asked for a project name and
directory. Then, you must make a
selection from the parts catalog of the
device that you will use for your proj-
ect. At this point, you must also indi-
cate whether you will be designing
the code in C (available for less than
$150) or assembly. The choice of
which language to use will determine
how the main application code will
be generated as you add modules.

Next, you get into the nitty-gritty.
On the Config pull-down menu, you’ll
see the three parts of the device editor.
As you can see in Photo 1, the left-
hand frame of the selection screen has
a list of module types. A click on any
of these will display all of the pre-con-
figured modules available using the
digital or analog PSoC blocks. 

Photos 1 and 2 display various
amplifiers. I clicked on the instrumen-
tation amplifier (INSAMP), as you can
see in the top frame of Photo 1. The
middle frame shows a block diagram
of the module chosen and the amount
of resources used both by this module
and in the total design thus far. The
lower frame displays a data sheet of
the module. The datasheet also shows
the code, which will be added to your
project when and if the module is
added to the project.

You can choose all of the modules
for your project before proceeding or
go through the placement of each as
they are chosen. Photo 2 shows the
INSAMP being placed after choosing
the placement screen of the device
editor. The hatched area in the large
frame highlights the blocks into
which the module can be placed. 

Alternate placements are cycled
through using the Next Allowed
Placement command. Remember to
pay attention to the possible intercon-
nection because they differ depending
on the placement of the module.
After you’ve chosen the position of
the module, stick the module down
using the Place command.

You will see the global resources in
the upper left frame. These can be set
from the drop-down menu that
appears when the entry at the right of
the resource is clicked on. For
instance, the 24V1 and 24V2 can be
set to values that will be needed by
various modules you select (i.e., data
rate generator). The configurable
parameters of the chosen module are
listed in the user module parameter
frame. The parameters can be set the
same way as the global resources or
by clicking on the appropriate mod-
ule labels in the large placement
frame. You will notice that some of
the module parameters include the
I/O interconnections. 

Now, it’s time to configure the I/O
pins. Choosing Pinout from the
Config drop-down menu will display a
screen similar to Photo 3. Even
though you’ve previously configured
modules with specific I/O pins, you
must again configure the interconnec-
tion at the I/O pins. Note that both
ends of all user connections must be
handled separately. Configuring the
I/O pins can be done either on the
pinout diagram in the center frame or
in the pin list in the lower left frame.

One of the modules I placed in this
project was a low-pass filter (LPF).
Now, design of a switched capacitor
filter is not something you can whip
off in an afternoon. There are endless
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decisions to make,
such as filter type,
clock frequency, capac-
itor values, and so on.
Cypress included filter
spreadsheets for LPF
and BPF, which simpli-
fy the design of a filter
and spit out appropri-
ate values to transfer
to the configuration
parameters. 

Finally, the PSoC
designer can take
your configured
design and generate
application files for
each of the modules
you chose. This takes
place when you enter
the Generate Application command.
But be aware that like most Windows
applications, PSoC designer com-
mands can be initiated in a number
of ways—shortcut keys, drop-down
menu, or icon on a tool bar.

Let’s go on to the third step in the
PSoC design process and look at the
files created by the generator. At this
point, you’ve indicated which PSoC
microcontroller you wish to use as
well as what modules are necessary to
make up your design. You have inter-
connected the modules and the I/O
pins of the device. The Generate

in your project and
header files used exclu-
sively for C. The
include file holds regis-
ter declarations for use
with the code of the
associated module.

If you were to look
into the boot.asm file,
you would see an
LCALL to an external
routine, known as
LoadConfigInit. This
routine is in one of the
remaining files in the
library source folder,
PSoCConfig.asm. The
PSoCConfig.asm
library folder uses the
PSoCCConfigTBL.asm

file to configure the PSoC modules
based on their configuration for your
particular project.

The final two files in the library
header folder are ftb_test_one_
GlobalParams.inc and m8c.inc
(except the ftb_test_oneAPI.h file
that’s used exclusively with C). As the
name implies, the ftp_test_one_
GlobalParams.inc file holds those
global parameters set while you con-
figure the device. The m8c.inc file
contains all of the specific CY8C2xxx
family system declarations and a set
of predefined macros.

That’s a whole lot of code and we
haven’t even written a byte of applica-
tion yet. Essentially, all of the neces-
sary code to use the placed modules is
now ready for use. All you need to do
to make use of the modules is place
the appropriate calls to initialize the
modules and use their functions in
your application. Use the main.asm
file for this. Because I configured the
global and module parameters in the
previous step, the boot.asm file auto-
matically initializes those registers
and the only task I have to do is ini-
tialize the modules. Now that I’ve
covered the groundwork, it’s time to
move onto the application.

PROJECT APPLICATION
Oops! This application is so simple I

forgot an important part. A small sig-
nal input of the sensor is amplified
and filtered prior to the 8-bit A/D con-

Application command has created a
number of files based on your previ-
ous selections. Photo 4 shows a list of
the source, library source, and library
header files my project generated. 

There are two files, boot.asm and
main.asm, in the source folder. The
former contains the interrupt table
(filled with jumps to the interrupt
routines needed by your module selec-
tions), sleep timer interrupt service
routine supported through interrupt
15, initialization of the oscillator reg-
ister, C support code if needed, and a
jump to the main.asm file. This
boot.asm file is regenerated from a
template file anytime a Generate
Application command is executed to
assure it reflects any changes to mod-
ules. main.asm, on the other hand,
contains nothing at this time. This is
where your actual application code
will go when you get around to writ-
ing it. I’ll come back to this later on.

Every module placed in your project
will produce a module source code file
and, if necessary, a module interrupt
source code file in the library source
folder. The module source code file
contains the routines to initialize,
enable, disable, and otherwise make
use of the module. The module inter-
rupt source code file contains the inter-
rupt service routine necessary for that
module, which requires interrupt action. 

In support of the source code files,
the library header folder contains
include files for each module placed

Photo 4—Here’s a list of the files created by the
Generate Application command for this project.
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Figure 6—The I/O pin connections have many possible paths to the various analog and digital blocks.
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verter. I need a conversion to take
place at periodic intervals and the
conversion data sent to the UART
transmitter. I forgot to place a count-
er to divide one of the clocks down
to the appropriate interval. I will
need a 16-bit counter for this and it
will create a periodic interrupt upon
which the rest of the application
code will be executed. Changing,
adding, or deleting modules or con-
figurations is not a problem with the
PSoC Designer, because all of the
files are easily regenerated to keep
the project current.

With the project application code
finished, use the Build command to
assemble the pieces into a single
ROM file. Before programming a
chip, you may want to debug to find
out how accurately you’ve defined
the project’s logic.

DEBUG
The development kit from Cypress

includes an in-circuit emulator (ICE).
Debugging your code takes place in
your hardware environment and not
just simulated by your PC. A short
CAT-5 patch cable connects the ICE
to one of many possible pods. Each
device size and package type has a pod
that makes the physical connection to
your PCB. Debugging begins with a
solid parallel port connection to the
ICE and downloading the project.rom
file. The standard debug commands
include read and write to the program
and data memory and I/O, CPU, and
RAM registers. The other commands
supported are run, halt, step, set,
clear breakpoints, trace, watch, and
dynamic event points. 

Let’s take a closer look at some of
these. Trace has three modes of log-
ging. The PC-only mode logs the
instructions executed. The PC/regis-
ters mode adds all of the CPU regis-
ters and the external 8-bit input of the
ICE. The PC/time stamp adds a time
stamp to each log entry. You can mon-
itor other TTL signals from your PCB
with the external inputs of the ICE. 

A watch variable can be input as an
address or label within RAM or flash
memory and be formatted as decimal
or hex in the watch window. Dynamic
event points (DEP) differ from break-

points (BP) in two ways. Breakpoints
halt execution upon a program count-
er (PC) match whereas dynamic event
points use a match of any or all of the
PC, data bus, address bus, instruction
type, external logic input signal, x reg-
ister, accumulator, SP, and F register
to trigger an event. A DEP can halt,
turn on or off trace monitoring, or set
an external trigger. With this flexibili-
ty, complex series and parallel moni-
toring can help find the causes of
stack overflow, memory trashing, and
out-of-bounds operation.

YOUR TURN
It is amazing the amount of stuff that

can be packed into an 8-pin chip these
days. Except for the memory size and
number of I/Os (depending on package
size), all of the CY8C2xxx micros are
comparable to eight digital and 12 ana-
log PSoC blocks. The 8-pin versions are
less than $3 in 100-unit quantities and
the big guys are less than $6, making
these extremely cost effective in elim-
inating external circuitry. The avail-
ability of helpful low-cost tools that
you get with this product, is of high
importance to most designers.

One of the advantages of flash
memory devices is, of course, repro-
gramming of the device. Think about
this, with a CY8C2xxx microcon-
troller you have to ability to write
code to reprogram your device on the
fly. Your application could change
from one module arrangement config-
ured for data input into a new module
configuration for data output. That’s
really fitting 10 lb into a 5-lb bag. I

SOURCES
CY8C25/26xxx Microcontroller
Cypress MicroSystems
(408) 943-2600 
Fax: (408) 943-6841
www.cypressmicro.com

PSoC Design Challenge 2002 site
www.circuitcellar.com/psoc2002

Jeff Bachiochi (pronounced BAH-key-
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n principle, I’m
a big fan of the

“smart” home con-
cept. It’s just that prac-

tice, not principle, is the problem. As I
sit here poking at my PC on a chilly
winter morning, I consider, wouldn’t
it be nice if I could bump up the
thermostat a tad without having to
trudge up the stairs?

When the hot summer days return,
I’ll be thinking similar thoughts about
the sprinklers. If I want to give the
yard an extra drink, it’s out to the
garage, squeeze past the cars, and try
to remember just what buttons to
push on the sprinkler controller. Or
how many times have you driven off
on vacation and as soon as you’re on
the freeway you’re wondering if the

coffee pot was left on or if the front
door was locked? Yes, I can hear the
dryer buzzer when the clothes are dry.
Indeed, it’s so annoyingly loud that
everybody in the house can. Too bad
it’s the middle of the night and we’re
trying to get some sleep.

The list goes on and on. Frankly, in
this era when everything from greet-
ing cards to kitty boxes has a micro in
it, life at home remains surprisingly
low tech. The problem isn’t so much
with the individual components. The
furnace, sprinkler controller, and even
the coffee maker and dryer already
have a microcontroller or two. The
problem is connecting them.

HEX-10
Like many of you, I’ve dabbled with

X10 over the years, even going so far
as to connect SBCs and PCs via a
power line TW523 two-way X10
interface. However, long ago I decided
there was no way X10 would ever be
able to serve as the true backbone for
a smart home, at least not mine. I
still catch flap from the wife for the
time I upgraded our outdoor lights
with X10 switches. 

The setup was flaky from the start
in just about every respect. Some out-
lets could talk to certain outlets but
not others. Lights might not respond
to commands issued or might respond
to commands not issued. Ultimately,
even the manual switching ability fiz-
zled out and my wife gave me the “If
technology is so grand” lecture, so
X10 went bye-bye. 

Yeah, maybe if you buy better stuff,
condition your AC line, bridge your
phases, and pray a lot, X10 might be
marginally OK for convenience items,
but in my experience it’s just too

Home Is Where 
the Plug Is

i
Although
working
with X10
can be
trouble-

some, Tom is still
turned on to the idea
of an intelligent home
control system. He
says the HomePlug
Standard looks like a
promising solution to
home control. 

Tom Cantrell
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Figure 1—Thanks to proper planning and proven technology, the HomePlug Alliance has met an aggressive schedule.
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Nimble response is no doubt
a by-product of the fact that
the 90-member HPA is of a
more manageable size than
other groups, which have hun-
dreds or even thousands of
members to placate. In any
case, the alliance was able to
agree quickly and quietly on a
specification based on technol-
ogy from Intellon. Notably
absent, at least publicly, were
the competitive corporate pos-
turing, positioning, and poli-

tics that seem to be par for the stan-
dards course these days.

HPA was able to take advantage of
the fact that Intellon already had a lot
of experience and proven know-how
in the powerline networking field.
Thus, the HPA not only quickly
agreed on the spec, but also even
found time to validate it in field trials
covering nearly 500 homes (10,000
wiring paths) in the U.S. and Canada.

OBSESSED FANGIRLS OF DUO
MAXWELL?

No, that wasn’t exactly what I was
looking for when I punched “OFDM”
into a search engine. Fortunately, I did
find a number of informative links
about Orthogonal Frequency Division
Multiplexing. You may have heard of
OFDM before. It’s been around since
the ’60s, but has really taken off in
recent years. [1] It’s used in a variety

unstable for much else. My
rule is that I will not connect
anything to X10 that I would-
n’t mind being on when it’s
supposed to be off or vice
versa. That list is short, and
definitely doesn’t include
things like furnaces, sprin-
klers, or coffee makers.

NETWORKING OPTIONS
Obviously, it would be won-

derful to run Ethernet cable to
every room in the house.
Unfortunately, that is not, and never
will be, an option for most folks. As
much as fancy structured wiring
schemes have been talked about
(remember CEBUS?), as far as I can
tell even builders of brand new homes
generally haven’t bitten the bullet.

Wireless Ethernet (a.k.a., 802.11) is
an attractive option. But, without
first-hand experience, I’d have to say
compatibility, interference, and range
are areas of possible concern. When it
comes to the 2.4-GHz spectrum, I’m
reminded of Yogi Berra’s famous say-
ing about a popular restaurant,
“Nobody goes there anymore because
it’s too crowded.”

The phone line is a wired alterna-
tive that should not be overlooked.
Modern DSL-like networking tech-
nologies such as Home PNA allow
simultaneous use of the line for both
voice and data. And, modern homes
have many more phone jacks than
their predecessors.

But, look around your own place of
residence and I think you’ll agree that
phone jacks still aren’t nearly as per-
vasive as AC power outlets. Without
doing a census, I’d say latter outnum-
ber the former by 10 to 1 in my own
abode. There are AC outlets in practi-
cally every room in the house, includ-
ing bathrooms, hallways, the garage,
and outdoors. This brings us full cir-
cle, except this time we’re not stuck
in the infinite X10 loop. Say hello to
HomePlug (see Photo 1).

STEALTH STANDARD
I was surfing along the web one day

when I stumbled across HomePlug.
Unlike many of the myriad of stan-
dards efforts that crowd the headlines,

the HomePlug Powerline Alliance
(HPA) has been working diligently to
get out the spec rather than just issu-
ing press releases.

As a result, in less than two years
the HomePlug Powerline Alliance
managed to go from a blank sheet of
paper to products on the shelf (see
Figure 1). The technology was created
in early 2000, followed by the first
products to the market in late 2001.
Then, the certification program was
established in 2002. That’s impressive
by any measure and particularly so in
comparison to the slower and more
tortured journey of bigger ticket stan-
dards like 802.11, 1394, and Bluetooth.

HPA was wise to start at the top with
a comprehensive marketing require-
ments document (MRD) that focused
on what needed to be done, rather
than launching into and getting ham-
strung by the details of how to do it.

Frequency

1.0

0.8

0.6

0.4

0.2

20–2–4

Figure 2—Orthogonal Frequency Division Multiplexing (OFDM) divides avail-
able bandwidth into multiple low-rate subcarriers to minimize the effects of
multi-path (echo) interference. With the HomePlug, 83 subcarriers are spaced
195.3125 kHz apart in the spectrum from 4.5 to 20.7 MHz.
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Figure 3—The Intellon INT5130 is one of the first HomePlug-capable ICs to emerge and is an easy retrofit for
existing Ethernet-based designs. 
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The total bandwidth is the same, so
why in the world would you do that?
Well, you’d do it if the problems asso-
ciated with getting the higher speed

of communication
schemes, everything
from digital TV to DSL
to wireless LANs (e.g.,
802.11a).

How does OFDM
work? In essence, it’s
like going from a fast
serial to a slow parallel
cable. What does that mean? To
understand the concept, consider the
example of going from a single-wire at
1 Mbps to 10 wires each at 100 Kbps.

link working were far
worse than implementing
more, but slower, channels.

And, it turns out that’s
just the situation for wire-
less and, as you might
imagine, AC power-line
communication. As the
data rate rises, symbols

become smaller and move closer
together. Throw in some multi-path
echo and you get inter-symbol inter-
ference, turning your signal to mush
and making it harder and harder to
discriminate where the ones and zeros
start and end. By contrast, each of the
slower links has plenty of space
between symbols, allowing echo to
fade and the signal to solidify between
more leisurely samples.

There’s one minor problem with the
concept though. Unfortunately, there’s
only one universe for RF to propagate
in, and only one piece of Romex going
to an AC socket. That means, in this
example, you have to mix the 10 pieces
of bandwidth onto one signal, and
then take them apart at the other end.

The orthogonal part of the equation
comes from spacing each equal sized
chunk of subcarrier at a fixed offset
from the next. The secret is that proper
spacing centers the peak power of each
subcarrier with the minimum power,
or null, of the next (see Figure 2).

Conceptually simple, at least simpler
than blowing through the multi-path
interference stop sign, OFDM isn’t
easy to implement. Heavy duty number
crunching (FFT and IFFT) is called in
to substitute for the impractical alter-
native of generating each subcarrier
individually, but that’s just the start.

The fact is it isn’t likely that each
subcarrier will deliver the same level
of service under all circumstances.
The amplitude and phase response
varies for each frequency and the par-
ticular topology of the connections
being made (i.e., which socket is con-
nected to which socket). And we’re
still talking about a laboratory grade
experiment. In the real world, there’s
noise on the powerlines generated by
motors, switching power supplies, flu-
orescent lamps, dimmer switches, and
even RF interference from the Ham
radio operator next-door.
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for PCI
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MAC/PHY
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conversion IC
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Figure 4—Thanks to the built-in MII interface, the INT5130 is a straightforward drop-in for
any system that incorporates an 802.3 MAC.
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To make the best of the situation,
HomePlug dynamically adapts to
channel quality in three different
ways. A particular subcarrier is tem-
porarily dropped if it’s completely
blitzed. Less severe degradation is
accommodated by adjusting the
amount of data per symbol (for exam-
ple, between 1 and 2 bits using
DBPSK and DQPSK coding, respec-
tively) and varying the amount of
bandwidth devoted to forward error
correction. As a result, HomePlug
delivers up to 14 Mbps across the
powerline, although as for most adap-
tive schemes, that’s no doubt a
“downhill with a tailwind” (i.e., best-
case) specification.

POWER MICROPROCESSOR
Nobody ever said it would be easy,

but the march of silicon means it is
possible. There’s no better place to
start than the Intellon chipset that
was, unsurprisingly, one of the first
chipsets to hit the street. As in a tra-
ditional modem, the two chips com-
prise the INT5130 data pump (see
Figure 3) and INT1000 analog front
end that jointly bridge most of the gap
between ones and zeros (3.3- or 5-V
tolerant) and 120 VAC.

From the designer’s perspective, the
’5130 offers two possible interfaces.
The first interface mimics a typical
Ethernet PHY by virtue of its Media
Independent Interface (MII), which is
defined as part of the IEEE 802.3u
standard. For more information, check
out the MII in Photo 2. The MII starts
with separate 4-bit transmit and
receive data buses. The PHY, in this
case the ’5130 subsystem, sources
both the transmit and receive clocks
at 25 MHz. These are derived from
the 100-MHz primary clock of the
’5130, which requires 25-ppm accura-
cy. Note this requires the use of an
overtone crystal and associated com-
ponents to guarantee reliable startup
at the proper (fifth overtone) frequency.

The MII transmit and receive data
and clocks are supplemented with var-
ious control signals that indicate
errors (RX_ERR, TX_ER), valid data
(RXDV), carrier sense (CRS), collisions
(COL), etc. MII is good news for
designs that easily (or already) incor-

porate a standard 802.3 MAC. That
explains why commercial deployment
of HomePlug by net box suppliers like
Linksys and NetGear is quick and
painless. Adding HomePlug to their
product lines is practically as simple
as dropping the INT5130 plus the
INT1000 into all of their existing
Ethernet-based designs (see Figure 4).

However, it would be a shame to
limit HomePlug to hosts with the
horsepower to handle a full-blown,
high-speed MII bus. Note that while

Photo 1—Promises are one thing, but real products
such as this Intellon-based router from Linksys prove
HomePlug is for real.
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order to maintain the opti-
mum level at the INT1000
analog input.

Finally, the INT5130
includes the link, collision,
and activity outputs defined
in the MII spec. Typically
these are used to drive LEDs
that let you know what’s
going on, a general design
practice I strongly encourage.

MAC ACK
As I said, the beauty of the

Intellon scheme is that their
chipset looks just like a stan-
dard PHY to an Ethernet MAC.
But inside, the INT5130 has

it’s own MAC. It’s a veritable MAC
attack raising the question of whose
MAC is on first?

Getting to this point wasn’t easy
though. Intellon had to overcome a
dilemma. On the one hand, the exist-
ing Ethernet MAC leaves a lot to be
desired in terms of features (for exam-
ple, predictable timing, security) and
isn’t necessarily well-suited to the
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the INT5100 does contain
internal buffering for it’s own
use, it acts like a non-buffered
device as far as the host is con-
cerned. After a packet is start-
ed, it’s 25 MHz or bust.

Fortunately, Intellon added
an alternative general-purpose
serial interface (GPSI) that cuts
the pin count in half (from 16
to eight) and the speed by even
more (25 to 10 MHz). That’s
within the range of reason for
the high-performance clocked
serial interfaces found on
newer MCUs.

Whether the MII or GPSI is
used for the data path, 802.3u
also defines a separate Management
Data Interface (MDI) that provides
access to INT5130 internal status and
control registers. Again, Intellon wisely
offers a more streamlined SPI option,
likely the more appropriate choice for
MCU-based designs. There’s also the
option of loading the registers at
powerup automatically from an external
EEPROM via yet another SPI interface.

On the analog side, the interface to
the INT1000 is a 10-bit bus passing
the transmit (DAC) and receive (ADC)
data at 50 MHz. The INT5130 also
outputs 4 or (optionally) 8 bits of auto-
matic gain control (AGC) information
to the receive front-end amp. This
allows the INT5130 to dynamically
adjust the gain from off (i.e., mute the
receiver during transmit) to 48 dB in

Photo 2—The IEEE 802.3u specification defines the Media Independent
Interface (MII) between the MAC (media access) and PHY (physical) layers.
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transmission characteristics of the
powerline. Obviously there’s no way
for Intellon to change the existing
MAC standards, nor is it expeditious
to wait for the new MAC standards
efforts underway to come to fruition
and migrate into the market. 

Instead, they came up with a MAC
in the INT5130 that’s a better fit and
made it impersonate the PHY, a stan-
dard Ethernet MAC expects. For
instance, in a addition to data, a stan-

dard Ethernet MAC transfers frames
across the MII that include a lengthy
preamble comprised of 56 bits of alter-
nating ones and zeros. But Intellon
would rather do it their own way, so
they simply strip the header coming
from an 802.3 MAC and add it back
when sending to an 802.3 MAC.

Meanwhile, the INT5130 MAC does
things it’s own way under the hood (see
Figure 5). For instance, it uses a virtual
version of the Ethernet’s well-known

CSMA/CA protocol. In
Ethernet, a collision is detect-
ed immediately by virtue of
the transmitter monitoring
it’s own data transfer.
However, the particular way
HomePlug works doesn’t
allow that option because a
transmitter will always hear
it’s own transmission, even if
there’s a collision that pre-
vents a receiver from hearing
it. Instead, HomePlug uses an
ACK/NAK handshake proto-
col to mimic collision detec-
tion; a NAK signifies a virtu-

al collision followed by the familiar
Ethernet back off and retry. Similarly,
the scheme supplements true carrier
sense with a virtual version. From the
control field, a receiver can identify
how long a transmission is expected
to last. Should it lose track of the
actual signal, it can still deduce a
sensed carrier from the elapsed time.

The contention mechanism of
Ethernet is fronted with a priority res-
olution window. In addition, automat-
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Figure 5—Under the hood, the INT5130 handles things much differently than a traditional Ethernet, with a completely different
packet structure incorporating specific features related to quality of service, security, and the unique characteristics of the
powerline as a network medium.
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ic segmentation is imposed on larger
frames to minimize the possible laten-
cy a higher priority request might
face. The 802.3 MAC doesn’t see it,
but, as mentioned earlier, behind the
scenes, the INT5130 MAC dynami-
cally adapts the channel (useable car-
riers, coding, and error correction)
periodically or in response to chang-
ing conditions. Note that channel
adaptation occurs independently in
both directions, meaning a receiver
tells the transmitter what it would
prefer. That allows each node to do
the best it can rather than having to
reduce the entire network to the least
common denominator performance of
the weakest link.

Oh yeah, don’t forget your AC sock-
et is likely connected to more than a
few of your neighbors. Despite twist-
ing the House Code dial, for all I
know one of my neighbors may have
been responsible for some of the
ghosts haunting my X10 experience.
There’s little comfort knowing that I
may have introduced a few ghosts in
their home as well. I like my neigh-
bors, but sharing my network with
them is going a little too far. 

HomePlug confines the activity to
my logical network defined by a com-
mon encryption key feeding a 56-bit
DES algorithm using cipher block
chaining. Whether or not that’s ade-
quate to satisfy privacy advocates is a
judgment I’ll leave to experts, but it
should keep casual or inadvertent
eavesdropping at bay.

A NET FOR ALL SEASONS
It’s tempting to view the myriad of

wired and wireless network standards
in a winner-takes-all light. However,
of late I’m coming to the conclusion
that we’re just going to have to juggle
all of them for the foreseeable future.
Instead of wringing your hands trying
to pick a winner, the proper course of
action is to identify which networks
work best for which applications and
put your effort into teaching them to
talk to each other. 

HomePlug occupies a unique niche
as a wired network that doesn’t
require any new wires. But as such,
it’s obviously not suitable for wireless
applications typically characterized by

portability and battery operation. On
the other hand, that means it’s a good
candidate for purely AC-powered
devices that never move. The differ-
ence between a laptop and desktop
PC comes to mind.

The networked smart home of
tomorrow will likely include half a
dozen or more interconnected network
technologies—cable, DSL, 802.3, 802.11,
Bluetooth, HomePlug, and yes, even
X10. Get over it, and get on with it. I

RESOURCES
OFDM Resource center
Palowireless Pty, Ltd.
www.palowireless.com/ofdm

Interactive OFDM Tutorial
Andrew C. McCormick
University of Edinburgh
Department of Electronics and 
Engineering 
Edinburgh, Scotland
www.ee.ed.ac.uk/~acmc/OFDMTut.
html

Tom Cantrell has been working on
chip, board, and systems design and
marketing for several years. You may
reach him by e-mail at tom.cantrell@
circuitcellar.com.

SOURCES
HomePlug Powerline Alliance
(925) 275-6630
Fax: (925) 275-6691
www.homeplug.org

INT5130 IC
Intellon, Inc.
(352) 237-7416
Fax: (352) 237-7616
www.intellon.com

Powerline router
Linksys Group Inc.
(800) 546-5797
(949) 261-1288
Fax: (949) 261-8868
www.linksys.com
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� Insert-ready sub-mini SBCs (small as 47x55 mm.) supporting the
Philips 8xC5918xC5918xC5918xC5918xC591, 89C51Rx289C51Rx289C51Rx289C51Rx289C51Rx2, XACxXACxXACxXACxXACx, XAGxXAGxXAGxXAGxXAGx, Infineon C167CxC167CxC167CxC167CxC167Cx,
Motorola MPC555MPC555MPC555MPC555MPC555 & ST Microelectronic  ST10F168ST10F168ST10F168ST10F168ST10F168

� Low EMI designLow EMI designLow EMI designLow EMI designLow EMI design achieved via GND circuitry, 6 to 8 layer PCB, by-
pass capacitor grid and short signal traces achieved via small
footprint and use of 0402 SMD passive components

�     32 KB to 8 MB external SRAM & Flash (controller-dependent)
� FlashTools enable on-board in-system (ISP) programming
� RS-232, RS-485, I2C & CAN interfaces; ADC; Chip-Select signals
� Controller signals extend to standard (2.54 mm.) or high-density

Molex (0.625 mm.) header pins on two sides of the board,
allowing the SBC to be plugged like a "big chip" into targets

� Available in Rapid Development KitsRapid Development KitsRapid Development KitsRapid Development KitsRapid Development Kits including Development Board,
AC adapter, serial cable and SPECTRUM CD with eval software tools
(Keil, TASKING), FlashTools, electronic documentation and demos

www.phytec.com

phyCORE Modules:phyCORE Modules:phyCORE Modules:phyCORE Modules:phyCORE Modules:
NEW GENERANEW GENERANEW GENERANEW GENERANEW GENERATIONTIONTIONTIONTION
SINGLE BOARD COMPUTERSSINGLE BOARD COMPUTERSSINGLE BOARD COMPUTERSSINGLE BOARD COMPUTERSSINGLE BOARD COMPUTERS

PHYTEC America LLC  PHYTEC America LLC  PHYTEC America LLC  PHYTEC America LLC  PHYTEC America LLC  �  255 Ericksen Avenue  �  Bainbridge Island, WA  �  USA 98110

(800) 278-9913

IDEA BOX
THE DIRECTORY OF PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet. 
ALL TEXT AND OTHER ELEMENTS MUST FIT WITHIN A 2″″ ×× 3″″ FORMAT. Call for current rate and deadline information. Send your disk and digital submis-
sion sheet to: IDEA BOX, Circuit Cellar, 4 Park Street, Vernon, CT 06066 or email kc@circuitcellar.com. For more information call Kevin Dows at (860) 872-3064. 

Suppliers Directory now available online. Check out our web site 
www.circuitcellar.com to see who has what and how to get it!
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64MB GEFORCE II, 60GB HD, SOUND & MODEM.
USES STANDARD PC133 SDRAM FOR GREATER
COMPATIBILITY ~ A DREAM BUY.
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PowerDesigner +
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RELIABLE PIII WORKSTATION! COMPLETE &
READY TO LOAD WITHOUT UNWANTED EXTRAS.

Dream
PowerDesigner 4s

BEST BUY! INTEL 845WN MAIN BOARD WITH
INTEGRATED SOUND, 40GB HD & 256MB RAM.
AVAILABLE UP TO 2.2GHz!
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here are a lot of people who wouldn’t care to admit it but the best military-inspired trickle-down technology of the
last century was the Internet. The concept was simple and straightforward—a packet management system for speed-

ing communication among engineers and educators. Fortunately or unfortunately, today the Internet has become a cen-
tral part of our lives. I can’t speak for everyone but living without it would be difficult. 

Of course, successful inventions tend to evolve in diverse directions. As I sit here writing this editorial, I’m listening to WQXR-FM radio in
New York City. I’m receiving it as streaming audio via the Internet. We’re only about 100 miles from NYC, which might not seem like much,
but I can’t receive it directly, no matter how big the antenna. More importantly, with a click of a few keys I can just as easily listen to WPR in
Dallas, Texas, or Classic FM in London, England.

Did I also mention that it is 4 a.m., that I have an Asian markets stock ticker in another window, and a live weather map in the upper right
corner next to the media player? Well, good or bad, our computerized world has become 24/7. Because there are no national or geographi-
cal boundaries on the Internet, it’s easy for a compulsive personality to become a workaholic when they deal with 23 other time zones all at
once. I’m not like that, I assure you. Aside from all of the simultaneous media watching, the most compulsive I get is checking e-mail immedi-
ately after the icon flashes and the tone sounds. I really hate it when it’s another Viagra message!

Being an old-timer, I remember the early days of the Internet. I’d get one or two e-mails a day and they would always be business related.
When I surfed the Internet, the pages that matched my keywords were G-rated and useful. Now when I enter a key word I get 243,506
matches, and have to think about every low-life interpretation of my keywords or the first 100,000 matches are X-rated. 

My single biggest complaint with the Internet these days is all of the subversive advertising activity just to catch eyeball attention. I’ve
come to live with sending 90% of the daily e-mail to the recycling bin, but the one thing that has got me really angry these days is browser
pop-ups. These are the little extra browser windows (sometimes there are a whole series of them) containing advertisements that suddenly
appear on your screen when you land on certain web sites (or try to exit one). I’m sure they were a brilliant idea from some advertising guy
who said, “I can get their attention!” Of course, it’s always the guys who don’t use the Internet who want to fix it for us.

Surfing the Internet today is like navigating an electronic minefield, especially when you are blindsided at otherwise innocuous URLs. I’m
told there are software packages to combat it like a virus, but pop-ups are much more insidious than viruses. We shouldn’t have to experi-
ence pop-ups, redirected homepages, and cute new URLs added to the Favorites list as the expected penalty for surfing the Internet.

Unfortunately, I don’t have an immediate solution either. The Internet is an international medium that seems totally governed by com-
merce instincts, not law. My aggravation of pop-ups aside, the more undisciplined the site, the more insidious the electronic disasters they
perpetrate. I would guess that there isn’t much we can do about the sizable portion of the Internet that is dedicated to illegal, immoral, and
depraved activities. And, as much as I see the need for some supervision, I don’t think that Big Brother watching over our Internet activities
or deciding which web pages pass the morality test (whose?) before posting is anything short of outrageous. In fact, when I hear that they
actually do that in some countries, I cringe. 

If unrestrained commerce and economic adventurism have created the present situation, then the only way to reduce the problem is to
demonstrate that it costs more than the benefits it provides. Complaining to commercial sites saturated with X10 pop-ups reminds them
about customer relations. Letting host sites know what you think about their advertisers is important. 

Unfortunately, I don’t see any easy way to rid the Internet of the rest of the crap, especially from the dark fringes. I wish there was a
magic bullet, however, I’m afraid it will take something more like carpet-bombing to get substantive results. I know it’s sacrilegious to mention
service fees in connection with e-mail and search engines, but economic logic may be the only incentive for unfettered surfing and a return
to spam-free e-mail. I paid a premium to get a high-speed connection to the Internet. Maybe now I have to pay a fee for the insurance that
keeps me from being trashed while I’m on it. 

Those Insidious Pop-Ups

INTERRUPT

t

steve.ciarcia@circuitcellar.com
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STILL THE WORLD’S MOST
POWERFUL PORTABLE

PROGRAMMERS?

Dataman Programmers Ltd
215 East Michigan Avenue
Orange City, FL 32763
Telephone (904) 774-7785
Fax (904) 774-7796
Home page: http://www.dataman.com
Email: sales@dataman.com

$795
inc 4mb ram

Orders received by 4pm will normally be despatched same day.
Order today, get it tomorrow!

Surely not.
Surely someone somewhere
has developed a portable programmer that
has even more features, even greater
flexibility and is even better value for
money.
Actually, no. But don’t take our word for
it. Use the feature summary below to see
how other manufacturers’ products compare.

$1295

DATAMAN-48LV
• Plugs straight into parallel port of PC or

laptop

• Programs and verifies at 2, 2.7, 3.3 & 5V

• True no-adaptor programming up to 48
pin DIL devices

• Free universal 44 pin PLCC adaptor

• Built-in world standard PSU - for go-
anywhere programming

• Package adaptors available for TSOP,
PSOP, QFP, SOIC and PLCC

• Optional EPROM emulator

DATAMAN S4
• Programs 8 and 16 bit EPROMs,

EEPROMs, PEROMs, 5 and 12V FLASH,
Boot-Block FLASH, PICs, 8751
microcontrollers and more

• EPROM emulation as standard

• Rechargeable battery power for total
portability

• All-in-one price includes emulation
leads, AC charger, PC software, spare
library ROM, user-friendly manual

• Supplied fully charged and ready to use

S4 GAL MODULE
• Programs wide range of 20 and 24 pin

logic devices from the major GAL vendors

• Supports JEDEC files from all popular
compilers

SUPPORT
• 3 year parts and labor warranty

• Windows/DOS software included

• Free technical support for life

• Next day delivery - always in stock

Still as unbeatable as ever. Beware of
cheap imitations. Beware of false
promises. Beware of hidden extras.
If you want the best, there’s still only one
choice - Dataman.

Order via credit card hotline - phone
today, use tomorrow.

Alternatively, request more detailed
information on these and other market-
leading programming solutions.

NEW MODEL

MONEY-BACK
30 DAY TRIAL

If you do not agree that these truly are the
most powerful portable programmers you can

buy, simply return your Dataman product
within 30 days for a full refund
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